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Abstract: Line-by-line radiative transfer calculations for the remote sensing of satellite instruments with a high spectral resolution are generally associated with a prohibitive
computational cost. Instead, a general approach is to create fast forward models based on look-up tables that relate the atmospheric state to the radiance measured by the
satellite. Recently, principal components analysis (PCA) has showed promising results in reducing the number of necessary frequency calculations. Potential for improvement
may be sought by generalizing PCA to nonlinear dimensionality reduction.
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The Physical Problem
Assimilating satellite radiances in numerical weather prediction requires solving the radiative transfer
equation (1) for all relevant trace gases, such as water vapor, carbon dioxide, ozone, and oxygen.
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However, particularly in the important infrared part of the electromagnetic spectrum absorption line
spectra of atmospheric trace gases can become very complex and require a very high spectral
resolution for an exact calculation of equation (1). For satellite data assimilation and operational
remote sensing this requirement for very high spectral resolution is computationally prohibitive.
Different approaches have been developed to circumvent this problem, including band models, and
correlated-k methods. In the flagship data assimilation codes CRTM [1] and RTTOV [2] a linear
regression approach is used successfully. However, the number of necessary atmospheric state
variables serving as predictors in the regression is quite high, including temperature profiles, pressure
distribution, and all trace gas concentrations and mostly integral functions thereof. Consequently
there is room for improvement and any gains in the radiative transfer will allow more data to be
assimilated quicker, resulting in cheaper and more accurate weather forecasts and satellite products.

Fig. 1: Example for a Principal Components axis for a bivariate data distribution (left) and the 
generalization in terms of a Principal Curve (right) for the same data set. 

The Idea
In order to enhance the computational efficiency of the regression approach, it is reasonable to
search for a coordinate system that allows for a simpler representation of the data. One approach
here is Principal Components Analysis. This method has been successfully applied in Ref. [3] to speed
up the radiative transfer forward calculations. Since PCA is a linear approach, a straightforward
generalization of this method is to look for a manifold description that simplifies the representation of
the data. One example of such a method is Principal Curves [4] (see Fig. 1). Here, a data smoother
such as a smoothing spline provides a curve that minimizes the orthogonal projected distance of the
data points onto the curve.

Synthetic Data from Line-by-line Calculations
As a simple test case to provide input data for the PCA and nonlinear manifold approaches, the so-
called oxygen-A band [5] is selected. This is an absorption band of the oxygen O2 molecule in the
optical part of the solar spectrum that is useful for applications such as cloud top height and aerosol
retrievals. The band ranges roughly ranges from 759nm to 780nm. For the high-resolution line-by-
line calculations the LBLRTM code [6] from AER was used.

Atmospheric State Variables as Predictors

Fig. 2: Low-resolution Kurucz spectrum [7] as the  solar source function (blue) with oxygen-A 
band contribution indicated in black.

The basis for the line-by-line calculations is provided by the ECMWF83 profile set, which is a
selection of 83 atmospheric profiles provided by the ECMWF and specifically selected for
radiative transfer calculations. A selection of the profile data is shown in Figs. 3-5.

LBL Output
Using the ECMWF83 profiles as an
input, TOA transmittance and radiances
as observed by a weather satellite are
computed using LBLRTM to provide
dependent variables as PCA and
nonlinear dimensionality reduction
input. An example is shown in Fig. 6,
where the Upward transmittance over
the oxygen-A band is shown based on
the ECMWF83 profile number 1. Oxygen
concentration was assumed to be
constant over the entire profile at
209,460ppmv [8].

Fig. 3: ECMWF83 temperature 
profile spaghetti plot with 
mean and median. The 
temperature increase in the 
stratosphere caused by 
shortwave heating through 
ozone absorption is clearly 
visible.

Fig. 4: ECMWF83 water vapor 
mixing ratio profile spaghetti 
plot with mean and median. 
Water vapor has a high 
concentration but also strong 
variability in the troposphere.

Fig. 5: ECMWF83 carbon 
dioxide mixing ratio profile 
spaghetti plot with mean and 
median. Similar to water vapor, 
the concentration of carbon 
dioxide is higher in the 
troposphere and reaches its 
maximum at ground level.

Fig. 6: LBLRTM Upward transmittance sample result for 
the oxygen-A band.


