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Abstract

Accurate local predictions are important for many stakeholders including ecosystems
managers or emergency personnel ahead of impactful events such as coastal flooding
or thunderstorms. Stakeholders are often looking for predictions that they can relate to

directly (such as data they are regularly consuming) rather than
numerical models. In addition, variables of interest and/or location

by gridded models or model resolution is too coarse. For example, operationa

output from griddec
may not be covereo

hydrodynamic models do not yet extend to many bays, estuaries and lagunas of
ecological significance. Since the early 2000’s the Conrad Blucher Institute has been

combining output from operational Numerical Weather Prediction

(NWP) models with

real-time measurements as input to computationally efficient machine learning models

to predict environmental variables at the locations of stakeho

ders’ interests. The

predictions have been used to interrupt navigation and coastal wor

KS In a laguna ahead

of large cold stunning events leading to thousands of turtles rescued. Other predictions
have been used ahead of coastal flooding events or are In development for the

automated prediction of thunderstorms with lead times of up to 15

hours. The use of Al

to build and implement the models will be described along with interactions with

stakeholders.
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Cold Stunning Event Predictions

Environmental Predictionof ~10K€ advantage of the flexibility and
Direct Relevance to computational efficiency of trained neural
nets to extend measurement time series

Methods used Include neural nets,
random forests, self organizing maps
(SOM). Operational models are all based

_ of the latest
el - L 1 environmental measurements (often 6

Bird Island Basin ANN Temperature Model Forecast

Methods: Shallow Neural Network and Random Forests ... %j;%ﬁ%
Goal: predict onset of cold stunning events with at least e
24hrs lead time to allow for cessation of activities in water ¥
body and staging of response
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Water Level/Flooding Predictions

Methods: Shallow Neural Networks

Goal: predict water levels for up to 72 hrs for locations where tidal predi
NOAA standards

Stakeholder/Partner: National Weather Service, National Park Service

ctions do not meet

,lll

Comparison of 24 h ANN predictions with measurements for Corpus Christi Naval Air Station
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Shallow Neural Network Predictions of Thunderstorms
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False Alarm Rate

Methods: Shallow Neural Network and Random Forests as non linear MOS

Goal: Predict Thunderstorms 9-15 hours in advance within 400 km? box regions in South
Texas

Stakeholder/Partner: National Weather Service
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Deep Learning Predictions of Thunderstorms
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Methods: Stacked autoencoder with logistic regression classifier

Goal: Predict Thunderstorms 9-15 hours in advance within 400 km? box regions in South
Texas

Stakeholder/Partner: National Weather Service

Ensemble Neural Net for DEM Corrections with Tolerance
Interval

Methods: Ensemble neural networks (SOM used for other parts of project)

Goal: Predict the difference between remote sensing (Lidar, UAS/Photogrammetry)
generated DEMs with reference ground measurements while estimating tolerance intervals
Stakeholder/Partner: Researchers and coastal stakeholders monitoring marshes

Mustang Island (Texas) Marsh DEM Corrected with Ensemble ANN Model
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