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Convolutional neural networks (CNNs; LeCun et al. 1998) have proven skillful for multiple tasks in the atmospheric and
climate sciences, given their ability to detect nonlinear relationships and spatial invariances in input features. Here we
show that a CNN can classify storms of a future climate with skill when trained with a historical climate. With machine
learning interpretability methods, we also gain insight into what the model learned (Molina et al.; under review).

• The watershed transform algorithm (Lakshmanan et al., 2009) was used to identify high-intensity updrafts associated with 
thunderstorms (Fig. 1; above) from a climate dataset spanning 26 years at 4-km grid spacing. 

• A CNN was trained to classify thunderstorms that were strongly or not strongly rotating in a current climate (Fig. 2; below). 

• Rotation was determined using updraft helicity between 2-5-km, which is computed using vertical wind speed and vorticity.

Fig. 1 (left): The dashed-line polygon 
contains the study domain. State 
variables were chosen as input 
channels and include moisture (qw), 
temperature (T), pressure (P), and 
meridional (v) and zonal (u) winds 
interpolated onto 1, 3, 5, and 7-km 
above ground level height. 

Fig. 2: The CNN used in this study consists of three convolutional layers, max pooling, batch normalization, and 2D spatial dropout (30%). A sigmoid 
function was used in the final dense layer, with a higher magnitude output probability representing a greater likelihood that the storm is strongly 
rotating and more likely to produce severe weather (model visualization: LeNail, 2019).

• Evaluation of the classification of future 
storms reveals a high probability of detection 
(POD) and critical success index (CSI), which 
shows that a model trained using a current 
climate can still perform well in a warmer and 
more moist climate (RCP8.5).

• Future outlier storms (99th percentile of low-
level moisture in the future) also reveal 
excellent performance (Fig. 3; right).

Fig. 3: Evaluation of CNN. Gray contours represent CSI, dashed lines represent bias, and probability thresholds shown in circles.

Fig. 4: Permutation feature importance analysis of future climate and outlier events.

• A simple explainability method is permutation 
feature importance, which ranks input features 
based on how much randomizing individual 
features increases error (Fig. 4; left). 

• The future climate and outlier cases show that u
and v winds at 3-km have high importance 
(based on CSI). Future outliers also show that 
moisture at higher vertical heights is important.

• Storms classified as strongly-rotating resemble supercellular 
convection, while non-strongly rotating storms are less organized.

• False alarms contain storms with high updraft helicity and misses 
contain storms that are near the edge of the object (Fig. 5; left).

Fig. 5: Simulated reflectivity of various model predictions.

Fig. 6: Saliency maps for a hit, false alarm, miss, and true negative case.

• Saliency maps reveal that the deep CNN 
focuses on the mesocyclone region of 
organized convection for kinematic and 
thermodynamic variables (Fig. 6; right). 

• Saliency maps (Simonyan et al., 2013) for 
non-strongly rotating convection contain 
farther dispersed gradients.
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