Methods

1. Perform a hindcast GCM run with a linear relaxation
"nudging" term added to prognostic equations:
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2. Train an ML model to predict the tendencies
above run given only the model state.

3. Now make a forecast using same model as step 1 and at each
timestep apply corrective tendencies predicted by the ML
algorithm trained in step 2.

Atmospheric model details

* FV3GFS at C48 (~200km) resolution (https://github.com/NOAA-EMC/fv3atm)
 Nudging temperature, specific humidity, surface pressure and horizontal winds
 6-hour nudging timescale t

 Reference dataset for nudging is GFS analysis at approximately 1° resolution
 Two-year nudged simulation initialized on 1 January 2015

* Training data comes from 2015 year; 2016 is used for testing and verification

Machine learning details:

 Random forest (RF) used to predict nudging tendencies

* Asingle RF is trained to predict a column of tendencies given column profiles of the model state

* |Inputs:
temperature (T) , specific humidity (q), eastward wind (u), northward wind (v), land-sea mask,
surface geopotential, cosine of zenith angle

* Outputs:
temperature nudging tendency, specific humidity nudging tendency, eastward wind nudging
tendency, northward wind nudging tendency

* Training data is 160 timesteps worth of column profiles; approx 2.2 million samples. 16 individual

trees, with max depth of 13

Coupling of machine learning and GCM:

 We use a python wrapper of the Fortran FV3GFS code to allow calling python code during model
simulation

e At end of each timestep, RF makes prediction of tendencies given current state of model and these
tendencies are applied to the state

* The column-integrated drying induced by the nudging or machine learning is assumed to be
converted to rainfall and is added to the surface precipitation rate felt by the land-surface model

* Alimiter is applied to the specific humidity tendencies predicted by the RF so that the resulting

specific humidity is non-negative
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Key points

 Arandom forest (RF) can make skillful predictions of the nudging
tendencies from a hindcast GCM simulation nudged toward
observational analysis.

* Coupling a conventional GCM to this RF results in marked
improvements in 1- to 10-day forecasts of Z500 and other
variables.

* The root mean squared error of annual-mean precipitation is
reduced by 24% in the RF-assisted GCM.

Nudging tendencies, offline predictions

Prediction

olumn heating [W/m2]

I
(-
o
o

C

-

Figure 1: Column integrated heating from nudging of temperature, averaged over 90 timesteps
of test data. Left: truth from nudged simulation, right: random forest prediction.
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* Nudging tends to heat and dry the atmosphere, especially in
regions of convection (e.g. ITCZ, warm pool, midlatitude fronts)
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Figure 2: As in Figure 1 but for column integrated moistening.

* Random forest predictions do a good job of capturing the mean
spatial pattern of nudging tendencies
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Figure 3: Offline R? skill for prediction of nudging tendencies. Up to 50% for temperature, less
for moisture. But since we are learning a corrective tendency, we don’t necessarily need high
offline skill to get a benefit online.

Bias correcting weather models with machine learning
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Improved weather and climate forecasts

baseline: standard C48 FV3GFS model, rf-control: C48 FV3GFS model with

random forest predictions of g, T, u and v tendencies at each timestep
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Figure 4: RMS error averaged across twelve forecasts initialized on the 15 of each month
of 2016. Shading shows * one s.d. Forecasts are verified against the simulation that was
nudged towards GFS analysis.

* Model with online RF correction improves lead-time of Z500
and surface pressure forecasts by about one day and lowest
model layer temperature by about half a day
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Figure 5: Precipitation bias relative to GPCPv1.3 product [Huffman et al., 2001] averaged
over 2016. Titles show global mean RMSE and bias in mm/day.

* RMSE of time-mean precipitation is reduced by 24% in rf-
control run compared to baseline

* The large positive bias of precipitation over Himalaya and
Andes in baseline run is significantly smaller in rf-control run

Future work

* How much of an improvement does this method provide if the baseline
model is higher resolution than 200km?

 Some temperature/moisture biases emerge in coupled GCM-RF simulations
on monthly timescales, particularly in polar regions. How to avoid this?

 Use a neural network? RFs require significant memory which is a drawback.
Have successfully trained a NN which produces stable simulations if it
predicts heating/moistening. Instabilities if it predicts wind accelerations.

* How best to account for ML moistening tendencies in terms of soil moisture
changes? Small land surface biases can emerge with current setup.



