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Key points
• A random forest (RF) can make skillful predictions of the nudging 

tendencies from a hindcast GCM simulation nudged toward 
observational analysis. 

• Coupling a conventional GCM to this RF results in marked 
improvements in 1- to 10-day forecasts of Z500 and other 
variables. 

• The root mean squared error of annual-mean precipitation is 
reduced by 24% in the RF-assisted GCM. 

Methods
1. Perform a hindcast GCM run with a linear relaxation 

"nudging" term added to prognostic equations:                  
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above run given only the model state.

3. Now make a forecast using same model as step 1 and at each 
timestep apply corrective tendencies predicted by the ML 
algorithm trained in step 2.

Atmospheric model details
• FV3GFS at C48 (~200km) resolution (https://github.com/NOAA-EMC/fv3atm)
• Nudging temperature, specific humidity, surface pressure and horizontal winds 
• 6-hour nudging timescale τ 
• Reference dataset for nudging is GFS analysis at approximately 1° resolution
• Two-year nudged simulation initialized on 1 January 2015
• Training data comes from 2015 year; 2016 is used for testing and verification

Machine learning details:
• Random forest (RF) used to predict nudging tendencies 
• A single RF is trained to predict a column of tendencies given column profiles of the model state 
• Inputs:

temperature (T) , specific humidity (q), eastward wind (u), northward wind (v), land-sea mask, 
surface geopotential, cosine of zenith angle 

• Outputs:
temperature nudging tendency,  specific humidity nudging tendency,  eastward wind nudging 
tendency, northward wind nudging tendency

• Training data is 160 timesteps worth of column profiles; approx 2.2 million samples. 16 individual 
trees, with max depth of 13 

Coupling of machine learning and GCM:
• We use a python wrapper of the Fortran FV3GFS code to allow calling python code during model 

simulation
• At end of each timestep, RF makes prediction of tendencies given current state of model and these 

tendencies are applied to the state 
• The column-integrated drying induced by the nudging or machine learning is assumed to be 

converted to rainfall and is added to the surface precipitation rate felt by the land-surface model 
• A limiter is applied to the specific humidity tendencies predicted by the RF so that the resulting 

specific humidity is non-negative 

Nudging tendencies, offline predictions

Figure 1: Column integrated heating from nudging of temperature, averaged over 90 timesteps
of test data. Left: truth from nudged simulation, right: random forest prediction.

Figure 2: As in Figure 1 but for column integrated moistening.

• Nudging tends to heat and dry the atmosphere, especially in 
regions of convection (e.g. ITCZ, warm pool, midlatitude fronts)

• Random forest predictions do a good job of capturing the mean
spatial pattern of nudging tendencies

Figure 3: Offline R2 skill for prediction of nudging tendencies. Up to 50% for temperature, less 
for moisture. But since we are learning a corrective tendency, we don’t necessarily need high 
offline skill to get a benefit online.

Improved weather and climate forecasts
baseline: standard C48 FV3GFS model, rf-control: C48 FV3GFS model with 
random forest predictions of q, T, u and v tendencies at each timestep

Figure 4: RMS error averaged across twelve forecasts initialized on the 1st of each month 
of 2016. Shading shows ± one s.d. Forecasts are verified against the simulation that was 
nudged towards GFS analysis.

• Model with online RF correction improves lead-time of Z500 
and surface pressure forecasts by about one day and lowest 
model layer temperature by about half a day

Figure 5: Precipitation bias relative to GPCPv1.3 product [Huffman et al., 2001] averaged 
over 2016. Titles show global mean RMSE and bias in mm/day.

• RMSE of time-mean precipitation is reduced by 24% in rf-
control run compared to baseline

• The large positive bias of precipitation over Himalaya and 
Andes in baseline run is significantly smaller in rf-control run

Future work
• How much of an improvement does this method provide if the baseline 

model is higher resolution than 200km?
• Some temperature/moisture biases emerge in coupled GCM-RF simulations 

on monthly timescales, particularly in polar regions. How to avoid this? 
• Use a neural network? RFs require significant memory which is a drawback. 

Have successfully trained a NN which produces stable simulations if it 
predicts heating/moistening. Instabilities if it predicts wind accelerations. 

• How best to account for ML moistening tendencies in terms of soil moisture 
changes? Small land surface biases can emerge with current setup.
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