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Monsoon intraseasonal oscillations

• According to various studies (Krishnamurthy and Shukla
2000; Krishnamurthy and Shukla 2007), seasonal monsoon
rainfall over the Indian subcontinent can be considered a
superposition of seasonal mean due to boundary
conditions and intraseasonal oscillations.

• Monsoon intraseasonal oscillations (MISOs) characterize
the active and break phases of the monsoon, and much of
the regional rainfall patterns.

• There are two dominant intraseasonal oscillations, with
periods of about 45 days and 20 days.
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MISO in 2016
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Singular spectrum analysis

• Singular spectrum analysis (SSA, Ghil et al. 2002) is
principal component analysis applied to time-series data.

• The multivariate version is called multi-channel SSA
(M-SSA), same as extended empirical orthogonal functions.

• Finds spatiotemporal modes in the data.
• Trend, oscillatory, and noise modes can be identified.

Example:
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Predictability of MISO

• Krishnamurthy and Sharma 2017 have demonstrated
predictability of MISO using an analog method (nearest
neighbors in oscillation subspace)

• This data-driven method predicts MISO much better than
the Climate Forecasting System (CFS)
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Motivation

• The oscillatory modes are much more predictable than
the overall time-series.

• Not limited to MISOs, also Madden–Julian Oscillation, etc.
which provide predictability beyond weather timescale.

• Data-driven forecasting methods have been developed for
oscillations.

• However, there is no way to go backwards, from the
oscillation forecast to forecast of the full time-series.

• How do we use forecasts of the oscillations to improve
prediction of the full time-series?
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Ensemble Oscillation Correction (EnOC)
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Ensemble Oscillation Correction (EnOC)

• Generally, in ensemble forecasting, it is better to use as
many ensemble members as possible.

• However, what if we have some reason to believe some
ensemble members are better than others?

• We can forecast oscillations accurately purely from data.
• Idea: for ensemble mean, use only the ensemble
members whose oscillation is close to that of a
data-driven oscillation forecast.
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Ensemble Oscillation Correction (EnOC)

Algorithm:

1. Using best estimate of the system state at time t0, project
into oscillation subspace and forecast the oscillation into
the future time t1.

2. Integrate ensemble members from t0 to t1.
3. At time t1, project each ensemble member into oscillation
subspace, and compare to oscillation forecast.

4. Compute the ensemble mean using the best m′ ensemble
members.
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EnOC-DA

• Instead of picking ensemble members, we can also
assimilate oscillation forecasts (EnOC-DA).

• Combine model forecast with “observation” of oscillation
forecast.

• Nonlinear observation operator: projection from full
phase space to oscillation subspace

• Observation error covariance matrix can be estimated
from estimates of oscillation forecast error.

• Tests with ensemble transform Kalman filter (ETKF).
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Experiments

• We show results of the method applied to toy chaotic
oscillators with parametric model error.

• We forecast oscillations using an analog-based method.
• We test a Colpitts oscillator, periodically forced Lorenz ’63,
and a Chua oscillator
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Choosing optimal m′

• If we care only about error in ensemble mean, we can
easily find the optimal number of ensemble members to
average over (m′) using a historical ensemble + estimate
of true state.

R
M
S
E

• Trade-off between benefits of large ensemble, detriment
of including inaccurate members.
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Error analysis

• Under some assumptions, we can derive an estimate of
the RMSE reduction of this method:

RMSEcorrected
RMSEuncorrected

≈

√
1−

(
% of variance of
osc. modes

)
(1)

• Numerical experiments show that this is a reasonable
estimate when the method works well.
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Conclusions and outlook
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Future plans

• Paper on the method and tests with toy models under
review.

• Currently testing EnOC method with Indian monsoon and
MISO.

• The MISOs make up ∼14% of daily rainfall variance.
According to the error reduction estimate, the method
could result in a 7% decrease in error in rainfall forecasts,
higher or lower depending on the region.

• Could improve other variables too, due to correction of the
potential vorticity field (Lien, Kalnay, and Miyoshi 2013).
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Future plans

• This method is a way of combining physical model
forecasts with a data-driven forecast; we are working on
generalizations of this.

• Other machine learning methods can also be used, and
non-oscillatory modes.

• This method can also be used to improve the background
in a conventional data assimilation system.
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Conclusion

• There are oscillatory modes in the climate system which
can often be predicted better than the system as a whole
(e.g., MISOs).

• However, there has not previously been a method for
leveraging oscillation forecasts for improving overall
forecasts of the system.

• We propose Ensemble Oscillation Correction (EnOC) which
does this by only averaging over the best ensemble
members, as determined by their discrepancy from a
data-driven oscillation forecast.

• Alternatively, this can be done with data assimilation.
• We show robust error reductions with toy models.
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Questions?

My email: ebach@umd.edu

My website: eviatarbach.com

Looking for postdoc opportunities!
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