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o Seamless modeling
@ What is seamlessness?
@ Seamless modeling systems

e Machine learning for models
@ Learning parameterizations from high-resolution simulations
@ Parameter calibration
@ Training on models, training on observations

© Ideas and challenges
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Science requires going beyond observations
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The premise of seamlessness is that the same model can be used for solving both initial
value problems and boundary value problems, including counterfactual values.
From Hawkins and Sutton (2009). ?@
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https://journals.ametsoc.org/doi/abs/10.1175/2009BAMS2607.1

Model configuration and calibration in a seamless modeling system
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Figure courtesy Gabe Vecchi, Princeton University. 4
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Current generation GFDL models

GFDL Seamless Modeling System — Predictions and Projections
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October 29-31, 2019

Note: IPCC models GFDL-CM4 and ESM4 use higher ocean resolution (0.25°, 0.5°). ?
Figure courtesy Tom Delworth, NOAA/GFDL. 4
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@ Learning parameterizations from high-resolution simulations
@ Parameter calibration
@ Training on models, training on observations
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What does any of this have to do with ML?

@ Models, even “seamless” ones, may be configured or calibrated differently for
different problems (e.g forecast horizons).

@ Each problem carries an implicit cost function by which a model configuration is
declared suitable.

@ Models do not converge cleanly with resolution: much unresolved physics is not yet
“scale-aware”.

@ Computation alone is not going to make the problem go away (see below...)

@ Important new constraints on models from observations (new generation of satellites,
Argo...)

@ While data science is a misnomer (what is non-data science?) the convergence of
computation and statistics that we call ML provides paths forward toward
seamlessness: traceable hierarchies of scale.
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What can we expect at an exaflop?

Will exascale be the rescue? Neumann et al (2019).
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Hypothesis: vastly reduced uncertainty at 1 km. J
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https://royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0148
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Nastrom and Gage (1985). More fidelity, more complexity over time in small scales
(“physics”). The backscatter idea (Jansen and Held 2014) provides an energetically ?@
consistent framework for SGS.
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https://www.sciencedirect.com/science/article/pii/S1463500314000766

Learn from short duration high resolution simulations

(Courtesy: D. Randall, CSU;

CMMAP).

@ Global-scale CRMs (e.g 7 km simulation on the left) and even super-parameterization
using embedded cloud models (right) remain prohibitively expensive.

@ Can we learn the statistical aggregate of small scales? See Schneider et al 2017,

(Courtesy: S-J Lin, NOAA/GFDL).

Gentine et al (2018), O’'Gorman and Dwyer (2018), Bolton and Zanna (2019), ... e @
@ GFDL-Vulcan collaboration begun. @
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001472

Model calibration

Model calibration or “tuning” consists of reducing overall model error (relative to some
goal of modeling) by modifying parameters. In principle, minimizing some cost function:

N
C(p1,p2,...) = Zw,\\@ — qﬁ?bSH
1

@ Usually the p must be chosen within some observed or theoretical range
Pmin < p < Pmax-

@ “Fudge factors” (applying known wrong values) generally frowned upon (see
Shackley et al 1999 on “flux adjustments”.)

@ The choice of wj is part of the lab’s “culture”. Cost also plays a role.

@ The choice of ¢S is also troublesome:

e “Over-tuning”: remember “reality” is but one ensemble member...
e overlap between “tuning” metrics and “evaluation” metrics.

\"/
See for example, Hourdin et al (BAMS 2017) ?V
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https://www.semanticscholar.org/paper/An-Interdisciplinary-Study-of-Flux-Adjustments-in-Shackley-Risbey/3112dd9ae54c8956c148623e87a01c1a0e8bb1b0
https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-15-00135.1

Problems with parameter optimization

@ Parametric uncertainty vs structural uncertainty.

@ A two stage process: process-level constraints followed by global constraints.
@ The choice of cost function.

@ Metric weights and normalization.

@ Do observations sample the space sufficiently?

@ If models “higher” in the hierarchy are used for calibration, are they representative of
all possible states? What the associated uncertainties?

@ Internal feedbacks and compensating errors.

Danny Williamson (Exeter) has been arguing that we should look at it differently, as a
problem of eliminating implausible regions of phase space rather than optimization.

v
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Formulating the problem

6x

+Z7Dn

@ Structure is given by P, we are trying to callbrate values of a vector of parameters \
@ Multiple metrics we wish to satisfy. For each metric f we can define a distance given
by:

[rs — Ef[All
02, + a5+ Var[f(\)]
@ Euclidean distance over history normalized by error (observational, structural,
chaotic)

@ Sample ) space as exhaustively as practical for / < T, the NRQOY space. lterate in
waves. Can use different metrics in subsequent waves.

If(A) =

NROY” = NkNROY/, Y
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Couvreux et al (2020)
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Sensitivity to resolution, domain
size, parameterization option

1. Selection of metrics -
Reference metric and
uncertainty computed from an
ensemble of LES

2. Identify free parameters
and possible range
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3. Sample n parameter ensemble and run n SCMs +——
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From SCMs compute metrlcs

4. Build emulator to predict the metric for any
values of parameters

GP=>E(f), V(Var(f))
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A

1

5. Compare metrics to reference metric and rule out
impossible values of parameters
=> Refined plausible space of parameters

Seamless modeling and ML

@ LES as ground truth,

multiple variants to get
“observational error”.

Emulate LES using
SCMs encoding all the
P.

Latin hypercube
sampling of A

Fit Gaussian processes
to SCMs to densely
sample all values of A
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Gaussian processes

20

T
fz)=zsin(z)

® e Observations

— Prediction

mmm 95% confidence interval

@ Extremely standard emulator, widely available in python libraries ,
@ Very poor at extrapolation, so training data must span phase space! v®
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Couvreux et al 2020, some highlights

@ Importance of a library of distinct physical regimes (e.g marine, continental) sampled
by LES

@ Results are sensitive to LES turbulence closure and numerics.

@ Don'’t do sensitivity analysis on the full phase space (premise is that most of it is
unphysical). But see discussion of order of imposition of metrics.

@ Even individual P may have multiple tunable subsystems with compensating errors,
e.g EDMF.

@ Rule of thumb: need 10xrank(\) SCM runs.

v

V. Balgji (balaji@princeton.edu) Seamless modeling and ML 24 September 2020 17/22



Hourdin et al (2020)
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@ Eliminate implausible parameter space comparing SCMs with LES.
@ ... leaving irreducible (“structural”) model error.

V. Balaji (balaji@princeton.edu)

Seamless modeling and ML

24 September 2020

%

18/22



Training on models or observations?
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From Chemke and Polvani (2019). Hadley cell strength is likely correct in models and Wt@
in “observations”! @
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https://www.nature.com/articles/s41561-019-0383-x
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© Ideas and challenges
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Using ML in seamless modeling: ideas and challenges

@ Big data, machine learning, Al: not a step change but massive computation applied
to existing methods (regression, classification, assimilation)

@ Seamless models may be a hierarchy of scale, resolution, cost: ML-inspired
emulators help navigate the hierarchy.

@ Models are calibrated in multiple stages: ML can play a role at process-level as well
as global constraints.

@ Training data may come from model hierarchy (e.g CRM, LES) or observations and
reanalysis (even for directly predictive methods, e.g Ham et al, Nature 2019)).

@ Ensure training data and ML methods are well-anchored in theory (see next talk by
Maike Sonnewald).

@ Fundamental questions still unanswered:

How much physics should be learnt?

Can we assume a structure for the physical formulation?

Process fidelity vs overall model error. @
Will ML give us differentiable models? &
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https://www.nature.com/articles/s41586-019-1559-7
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