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Flood forecasting

e Affects hundreds of millions of people
e Thousands of fatalities per year

e Flood forecasting is an effective mitigation tool

o Can reduce fatalities and economic impacts by a third”

*J. Malilay: Floods. In The Public Health Consequences of Disasters, Oxford University Press, 1997
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Flood forecasting ingredients
e Real-time and forecasted water level measurements
e High resolution Digital Elevation Models (DEMs)

e Forecasting techniques: some combination of
o Hydrological modeling
o Hydraulic modeling

o Machine learning
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Hydraulic modeling: 2D shallow water equations
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q = flux [discharge per unit width, L? / T]
h = water height

z = surface elevation

n = Manning friction coefficient
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science for a changii

As of 08/14/2018 3D Elevation Program: FY18 Status of 3DEP Quality Data

For more on the 3D Elevation Program
(3DEP) visit:
http://www.nationalmap.gov/3DEP

Visit the US Interagency
Elevation Inventory (USIEI) at:
http://coast.noaa.gov/inventory/,

Map showing
the areal extent
and quality level
of planned, in progress,
and existing publicly
available lidar (ifsar in
Alaska) data identified by
the U.S. Interagency
Elevation Inventory (USIEI)
that meet 3DEP base-level
specification as of August
2018. 3DEP base-level
specification data are
defined as quality level 2 or
better lidar data (ifsar in
Alaska) and 8 years old or newer.
The inventory was produced in
partnership by the U.S. Geological
Survey and the National Oceanic and
Atmospheric Administration. While every
attempt has been made to accurately
inventory projects that are publicly
available, some errors and omissions
may occur.
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USGS 3DEP Map
As of Aug 2018
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Hydraulic Model Simulation

e Main parameter is the discharge at the input
boundary (volume of water per unit time)

e Run to (close to) steady state (2 days)
e Run with various discharges

e Results compared to satellite images
e — Discharge = 15k m®/s
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Table 3. Streamgage information related to calculation of annual exceedance probability for the May to June 2019 flood event alon

Arkansas.

[AEP, annual exceedance probability; USGS, U.S. Geological Survey; ft, foot; ft*/s, cubic foot per second]

Peak streamflow for May to June 2019 flood

USGS
streamgage USGS streamgage name Rt e Rank of peak
ber' streamflow  Peak gage  Peak stream- past Number of
number . streamflow in
height (ft) flow (ft¥/s) annual peaks
record
07152500 Arkansas River at Ralston, Okla. 5/23/2019 22.14 185,000 1 43
07164500 Arkansas River at Tulsa, Okla. 5/29/2019 23.51 277,000 2 )
07165570 Arkansas River near Haskell, Okla. 5/29/2019 24.24 286,000 1 47
07194500 Arkansas River near Muskogee, Okla.2  5/26/2019 46.39 600,000 1 33
07250550 Arkansas River at James W. Trimble 5/31/2019 406.96 570,000 1 50
L&D near Van Buren, Ark.3

07258000 Arkansas River at Dardanelle, Ark.? 5/30/2019 45.91 565,000 1 50
07263450 Arkansas River at Murray Dam near 6/4/2019 259.75 520,000 1 50

Little Rock, Ark.?
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satellite image from 5/19/2019 https://gis.arkansas.gov
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Observations about sim result

e USGS 3DEP Lidar provides an excellent DEM
o captures bare earth beneath trees
o includes bathymetry

e Running simulation on 64 CPU cores can take typically
O(days)

o How to speed this up? Days — minutes?
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Hardware accelerators

GPUs are well equipped to train Al models

e Thousands of cores
e |arge memory bandwidth
e Matrix multiplication

Since 2016 Google has launched TPUs specifically to
increase Al performance — Also great for HPC
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1 Cloud TPU has

4 chips
2 cores/chip
Cloud TPU v2 Cloud TPU v3 8 cores
180 teraflops 420 teraflops
64 GB High Bandwidth Memory (HBM) 128 GB HBM
256 Cloud TPUs

form a v3 Pod

Cloud TPU v2 Pod Cloud TPU v3 Pod 2048 cores
11.5 petaflops 100+ petaflops
4TB HBM 32 TB HBM
2-D toroidal mesh network 2-D toroidal mesh network
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DiStri b utio n Partitioned grid as variables collocated on GO gle Research
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Simulation performance comparison

Single CPU core vs. single TPU core

Intel Xeon E5-16504 v4 @ 3.6 GHz vs. Google Cloud TPU v3
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CPU-TPU Comparison Results
Cell Size (m) | Grid Points (M) | CPU steps/s | TPU steps/s | Speed Up
4 62 0.26 30.22 118
8 15 1.04 118 114

4m resolution for 1.7 million steps:

77 days for 1 CPU core vs.

16 hours for 1 TPU core — 512 cores — 9 minutes



Arkansas Flood Simulation Performance for 1 to 512 cores

steps /s
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Layout of TPU Cores

e 2D simulation — 32 cores (e.g.) can have various assignments
per axis: 1x32, 2x16, 4x8, etc.

e In many HPC settings, a more square per-core grid will be most
efficient (8x4 in this case since the grid aspect ratio is ~2)

e T[PUs have very high bandwidth, so latency dominates
o The most extreme layouts (e.g. 32x1 or 1x32) are most
efficient in this 2D case
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Time to compute 1.7 million steps

Resolution 8 cores 32 cores 128 cores 512 cores
8m 43 mins 13 mins 5.9 mins 6.1 mins
4m 2.7 hours 44 min 15 mins 8.9 mins
2m 10 hours 2.7 hours 46 mins 18 mins
1m 40 hours 10 hours 2.7 hours 53 mins

1.728 million steps = 2 simulation days if dt = 0.1 sec.
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Weak Scaling Efficiencies
Resolution 8 cores 32 cores 128 cores 512 cores
8m
4m 97% 84% 66%
2m 99% 93% 72%
1m 100% 100% 80%
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Strong Scaling Efficiencies
Resolution 8 cores 32 cores 128 cores 512 cores
8m 83% 46% 1%
4m 91% 66% 28%
2m 94% 83% 54%
1m 99% 94% 70%
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Flood forecasting using hydraulic models

e In steady-state rivers, many simulations with different discharges are
typically done offline, before flood season.

e During flooding, given actual and predicted stream gauge measurements,
the correct discharge is picked out and alerts are sent out.

e Changing run times from days to minutes allows for a real-time approach.

e Also, real time approaches are needed in case of dynamic rivers
(non-steady-state).
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Conclusion

e Hydraulic flood simulations are a useful tool in flood forecasting
e Running simulations on TPUs can dramatically decrease run times
o Scaling results shown for Arkansas flood simulation

e Running on a fleet of TPUs opens the possibility for real time
approaches in both steady-state and dynamic river cases (e.g.
variational data assimilation)

e Al: TPUs can readily generate data sets for machine learning training

e Paper in progress; GCP Python interactive notebook with flood
simulation will be made available



