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• Passive remote sensing instruments like the Advanced Baseline Imager (ABI) on GOES-16/17, are
particularly effective at revealing attributes of the topmost layer of clouds (their height, particle size,
water content, etc.). However in multilayer situations, information on those lower layers is limited.

• NOAA customers, however (particularly in the aviation community), may be particularly interested in
the presence of low clouds. This is especially relevant for general aviation in terms of applicability of
VFR vs. IFR conditions, the presence of aircraft icing, mountain obscuration, etc.

Introduction

Original (non-ML) Cloud Product
• The baseline cloud height identification product that we wish to improve is called Cloud Cover Layers

(CCL). In its earliest form, this algorithm identified ABI pixels as containing exactly one of (L)ow, (M)id,
or (H)igh cloud, based mostly on the associated cloud top height determination.

• In the past three years, we have improved this product by using a priori statistical relationships derived
from the spaceborne CloudSat radar and CALIPSO lidar (Noh et al. 2017) to derive the geometric
thickness of the topmost cloud layer (𝝙z) for any pixel observed by the ABI. When combined with the
cloud top height (CTH), this new information allows clouds to occupy more than one vertical level. The
following diagram demonstrates how a cloud that used to be simply classified as H (high) can now be
classified as H+M (high plus mid):

• The ABI satellite image at left shows a cold air outbreak
spreading southward across the Great Plains. Low
clouds are occurring behind the front in the cold air.

• The white/gray areas are high clouds identified by their
cold IR brightness temperatures; the blue areas are low
clouds detected using a 10.3 minus 3.9 μm threshold.

• Are there low clouds ”hiding” under the cirrus at the red
‘X’? Our meteorological experience says “yes”, but this
isn’t at all evident from a satellite algorithm alone.
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GOES-16: GeoColor image of cold air outbreak on 2020/02/03
(IR [white] + background city lights + low cloud [blue] 10.3-3.9 μm)

• The purpose of this study is to explore the use of Machine Learning to improve our ability to detect
low clouds from satellites, especially to augment existing satellite products.
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Old classifications Additional classifications
Figure shows old and new cloud classifications.
Note that CCL allows six cloud categories:

H,M, L, H+M, M+L, and H+M+L.

It cannot accommodate low clouds under high
clouds (H+L), because no cloud breaks are allowed

Method
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Results

• We can evaluate this algorithm using overpasses of the CloudSat radar and CALIPSO lidar through
the ABI full disk sector. This is an example vertical cross section through some clouds that ABI-only
algorithms identified as containing only cirrus:

Colors: Radar 
reflectivityABI “Cirrus” Cross Section

Magenta: Lidar
mask • The radar/lidar reveal that there is significant coverage of low

clouds (below 4 km) in scenes that ABI indicates contains only
cirrus.

• These low clouds are largely not resolved by the ABI CCL
algorithm (as indicated by lack of a “black background” in low
levels)

• More rigorously, we find that although ABI CCL can
identify about 73% of low clouds, this drops to 22% when
such clouds occur under cirrus.

Black background = ABI identifies cloud at this level

No black background = ABI finds no cloud at this level
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Data / Preprocessing
• We want to improve the ABI Cloud Cover Layers product by ”filling in” the missing low clouds (see bottom left panel of this poster) using machine learning.
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One orbit of CloudSat (colored lines) overlaid on a 
geostationary infrared “collage” background

• CloudSat radar and CALIPSO lidar will provide the “truth”; as active sensors, they detect most clouds in the atmosphere.

CloudSat/CALIPSO 
radar and lidar data
were matched to GOES 
ABI observations for 
141 days in 2017 and 
2019, for a total of 9.9 
million radar profiles

7.8 million profiles are 
used for algorithm 
training, and the rest 
are reserved for testing

Parallax error Δx in position of 5 km deep cloud (km)
CloudSat views near-nadir 

while ABI is over the equator 
– so parallax correction is 
essential and is performed

CloudSat

ABI

• The parallax-corrected GOES-16 ABI data are 
matched to the nearest pixel along CloudSat / 
CALIPSO ground track, in all 16 channels

• Currently, surrounding pixels are not utilized (but we 
expect improvements by doing so)

• National Snow and Ice Data Center (NSIDC) daily 
microwave SSM/I-based land/sea surface 
characterization, the GTOPO30 elevation map, and 
atmospheric relative humidity profiles from ECMWF 
model are also matched to the same location

• A Random Forest (RF) classifier (Breiman 2001) is used for
this work. For each of the matched CloudSat/CALIPSO/ABI
pixels in the training set, the binary question is asked “Is a
low cloud (< 642 hPa) present?”

• Data used for training has been determined experimentally.
Initially we included all ABI channels in the training, but a
selection of physically relevant channels, ratios, and
differences has led to better results.

• Currently we use the following for training during daytime:

• At night, training data does not use channels ≦ 3.9 μm

TB 10.35 μm – TB 12.3 μm

0.64 μm 1.38 μm 1.38 / 0.64 μm reflectance ratio

1.38 um is in a water vapor absorption band;
low clouds tend to preferentially “disappear”
at 1.38 compared to 0.64 um due to low level
water absorption

Split window difference

The 10.35 minus 12.3 μm split window
difference has long been used as a cloud
classifier, e.g. Purbantoro et al. (2018)

∼25000 km

∼25000 km

Mid-latitude RH / Cloud Mask “Mashup”

Tropical RH / Cloud Mask “Mashup”

✓
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Column relative humidity (RH)

We have extensively studied the colocation
of clouds (from CloudSat/CALIPSO) with
RH maxima from NWP. RH can be a useful
predictor in the mid-latitudes; it is less
useful in the tropics given the prevalence of
cloud-free moisture plumes.

Red: Clouds (and
moisture)

Colors: Relative
humidity (moisture but 
NO cloud)

Example motivations behind just a few of these choices…
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DEM

abi_ch07 3.9 μm
abi_ch10 7.34 μm

RH 4.0 to 6.2 km
abi_ch02 0.64 μm
abi_ch03 0.87 μm

solzen
lat

RH 1.8 to 4.0 km
RH 0.0 to 1.8 km

abi_ch14 11.2 μm
abi_ch01 0.47 μm

10.35  μm - 12.3 μm
3.9 μm - 11.2 μm

1.38 μm / 0.64 μm

Feature Importance (Daytime, Permutation based)

• After training, the daytime results are evaluated on an independent test data set, consisting of 2.1 million
CloudSat/CALIPSO/ABI matchups (Oct 2017, Jan 2019)

• Inputs: ABI / ECMWF / NISE / DEM data from table at left
• Outputs: Is there cloud below 642 hPa? (0 or 1)
• Validation: CloudSat / CALIPSO radar lidar “truth”
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Low cloud PoD: RF+CCL (dark), CCL (light)POD (Probability of detection) of low cloud
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Low cloud FAR: RF+CCL (dark), CCL (light)FAR (False Alarm Ratio) for low cloud detection
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Low cloud CSI: RF+CCL (dark), CCL (light)CSI (Critical Success Index) for low cloud detection
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Upper, DARKER bars:

NEW results, where we consider a low
cloud to be predicted when either the
Random Forest (RF) predicts low cloud,
or our original (CCL) algorithm predicts a
low cloud

Lower, lighter colored bars:

Original, non-machine learning (CCL)
algorithm

Better

Better Better

Combined CCL + Random Forest

Figure at left shows that the new algorithm (dark bars)
has increased POD compared to the original algorithm
(light bars) for all cloud types (except same for fog)

Improvement is most significant for the Cirrus and
Overlapping cloud categories, which contain a
significant fraction of multilayer clouds.

The RF algorithm has learned radiance and humidity
profiles associated with low cloud occurrence (RH is
not part of the original algorithm).

Figures at far-left show the FAR for low cloud detection
for the new algorithm (dark bars) and original algorithm
(light bars), for all ABI cloud types.

Note that the new algorithm has an increased rate of
false alarms (detecting low cloud where there is none),
for the same categories that simultaneously show the
largest detection improvements. This is not particularly
surprising, as the original algorithm is unable to identify
the heights of broken cloud layers in multilayer scenes.

CSI (a non-linear combination of POD and FAR)
increases for all categories.

Feature Importance

Permutation-based feature
importance analysis shows that
the 1.38/0.64 reflectance ratio,
3.9-11.2, and 10.35-12.3
channel differences have the
largest influence on the trained
model.

However ABI channels are
highly correlated with one
another, as demonstrated by
the slow decrease in accuracy
when top predictors are
independently removed, one-
by-one, and training repeated.

This suggests an operational
retrieval can be run with a
decreased # of inputs, while
retaining similar accuracy.

Accuracy as top predictors are removed

Two Examples of the Improved Algorithm

Figure shows a full-disk GOES-16 image of
the original (left) and new RF-informed (right)
CCL algorithm from 2019/01/05 17:15 UTC.

Note especially the shift from High+Mid cloud
to High+Mid+Low cloud (blues à purples) in
the deepest cyclones. This is consistent with
CloudSat radar sampling of such systems.

This is the same cross-section through ABI-identified
cirrus as shown in the bottom-left figure of this poster;
except the black background (showing levels where
the CCL algorithm determines clouds are present)
has been updated with the low cloud RF output.

Note that the low level clouds are now largely
properly detected, whereas they were missed before.

Old New

Data:
GOES ABI courtesy NOAA
CloudSat, CALIPSO, and ECMWF data from CIRA’s CloudSat Data Processing Center: http://www.cloudsat.cira.colostate.edu
Microwave-based surface data characterization from National Snow and Ice Data Center: https://nsidc.org
Digital elevation (GTOPO30) data from United States Geological Survey: https://www.usgs.gov
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(*) The three plots above, and the accuracy plot at left, are from an earlier run that differs only in that it does not include surface elevation or surface characterization

• In these runs, 50 estimators (trees) are used; but there is
practically no improvement (or degradation) in evaluation on
the test data set after ~25 estimators
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