
David Hall, Senior Data Scientist, NVIDIA

NOAA-AI Workshop Tutorial, Nov 2020

A PRACTICAL INTRODUCTION TO 
DEEP LEARNING FOR THE EARTH 
SYSTEM SCIENCES, USING PYTORCH 



WE WILL
Identify tropical storms and hurricanes with deep learning using PyTorch
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WE WILL
Examine Artic Sea-Ice Extent as a ‘warm-up’ exercise



WE CAN
Apply the same techniques to detect features on the sun
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LEARNING GOALS

In 2 hours, we can only travel 
so far

Main goal: 
Become familiar with ideas 
and process

A starting point for solving your 
own problems
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SUGGESTED PRE-REQUISTITES
Familiarity with Python and NumPy are helpful
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WHY PYTORCH?
PyTorch is the Preferred Framework for Research

https://paperswithcode.com/trends
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AGENDA

• Intro 5 min
• Activity: Intro to Colab 15 min
• What is Deep Learning? 15 min
• Activity : Curve Fitting in PyTorch 15 min

• Fully Connected Networks  20 min
• Break 5 min

• Classification and CNNs 20 min
• Activity : Cyclone Classification 20 min
• Wrap up 5 min
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DOWNLOAD THIS PRESENTATION
https://github.com/halldm2000/NOAA-AI-2020-TUTORIAL
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HAVING TROUBLE WITH GOOGLE COLAB ?
https://www.google.com/chrome/

Google Colab works best with Google Chrome Browser

https://www.google.com/chrome/
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ACTIVITY: INTRO TO COLAB
Click here to launch the notebook

https://colab.research.google.com/github/halldm2000/NOAA-AI-2020-TUTORIAL/blob/master/01_IntroToColab/IntroToColab.ipynb
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WHAT IS DEEP LEARNING?
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DEEP LEARNING ANALOGIES
What is this deep learning thing, anyway?

A NEW TYPE OF SOFTWARE (POWERFUL!) A GENERALIZATION OF CURVE FITTING (SIMPLE!)
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DEEP LEARNING CAN DO IMPRESSIVE THINGS

DEFEAT WORLD CHAMPION STRATEGISTS OPERATE VEHICLES AUTONOMOUSLY

COMMUNICATE IN NATURAL LANGUAGE GENERATE ORIGINAL CONTENT
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A NEW WAY TO BUILD SOFTWARE

TEMP, PRESSURE, MOISTURE

PROBABILITY OF RAIN

FUNCTION 1

FUNCTION 2

FUNCTION 3

FUNCTION 5

FUNCTION 4

Function1(T,P,Q)

return y

HAND-WRITTEN FUNCTION

Convert expert 
knowledge into a function

LEARNED FUNCTION

Reverse-engineer a function 
from inputs / outputs

Function1(T,P,Q)

return y

Function1(T,P,Q)

update_mass()

update_momentum()

update_energy()

do_macrophysics()

do_microphysics()

y = get_precipitation()

return y

Function1(T,P,Q)

A = relu( w1 * [T,P,Q] + b1)

B = relu( w2 * A       + b2)

C = relu( w3 * B       + b3)

D = relu( w4 * C       + b4)

E = relu( w5 * D       + b5)

y = sigmoid(w6 * E     + b6)

return y
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LEARNED FUNCTIONS ARE GPU ACCELERATED
Next level software. No porting required.

DATA GPU ACCELERATED
FUNCTIONS
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USE IT TO ENHANCE EXISTING APPLICATIONS
Improve all stages of numerical weather prediction

PARAMETRIZATIONDYNAMICSCOLLECTION ASSIMILATION

4DVAR

THINNING COMMUNICATION
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WEATHER DETECTION ENVIRONMENTAL 
MONITORING

DISASTER PLANNING NEAR-EARTH OBJECT 
DETECTION

DATA FUSION AUTONOMOUS 
SENSORS 

DATA 
ENHANCEMENT DATA DRIVEN MODELS

USE IT TO BUILD NEW CAPABILITIES



20

PART 1: 
CURVE FITTING 
WITH PYTORCH
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PRACTICE DATASET: 
ARTIC SEA-ICE EXTENT

Source: NASA
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SEA ICE EXTENT VS TIME
An interesting data set to practice curve-fitting
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ANNUAL SEA ICE EXTENT 2D
Find function: extent = f(day of year, year)
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ANNUAL SEA ICE EXTENT 1D
Find function: extent = f(day of the year)
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TAYLOR SERIES
Function approximation using polynomial basis vectors
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FOURIER SERIES
Function approximation using sinusoidal basis vectors
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CURVE FIT



CURVE FIT
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ACTIVITY: IMPROVE THE CURVE FIT
Click here to open notebook

https://colab.research.google.com/github/halldm2000/NOAA-AI-2020-TUTORIAL/blob/master/02_CurveFitting/curve_fitting_sea_ice_train_only.ipynb


FOURIER SERIES SOLUTION
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LOSS FUNCTION
Error surface, measuring how well prediction matches targets

Start with 
random weights

Compute the gradient 
and follow it downhill

Stop when
the error is small
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OPTIMIZER
Strategy for adjusting model weights, to minimize loss
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BACKPROPAGATION
Compute gradient of loss function with respect to each parameter

Predict

Distribute Error 

Compute Loss



AUTOGRAD
Let a framework keep track of your gradient, so you don’t have to
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GENERALIZATION
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UNDERFITTING AND OVERFITTING
A good model is one that generalizes to new data

UNDER FIT GOOD FIT OVER FIT

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
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EPISTEMIC ERROR
Error can be large, far from training data

UNDER FIT GOOD FIT OVER FIT
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EPISTEMIC ERROR
Error grows, in regions far from our training  data

https://www.researchgate.net/figure/Illustration-of-Gaussian-process-regression-in-
one-dimension-for-the-target-test_fig1_327613136

Areas of large error
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DATA SPLITTING
Split your examples into train, validation, and test sets

Data

Train Validation Test

For model training For hyperparameter tuning For final evaluation
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SPLITTING TIME SERIES DATA
Avoid correlations and extrapolation

--

TRAIN VALIDATION TEST

VERY BAD:
SELF-CORRELATED

BAD:
EXTRAPOLATION

GOOD
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VALIDATION 
Block shuffled
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VALIDATION
Fully shuffled: self-correlated

Too good to be true:
Training and validation error look the same, 
because the data are nearly identical 
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VALIDATION
Sequential: future = extrapolation
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FULLY CONNECTED 
NETWORKS



SHALLOW NEURAL NET 1D 
ReLU basis function expansion



SHALLOW NEURAL NET 1D 
Using nn.sequential
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RELU = PIECEWISE-LINEAR
ReLU basis functions can represent any function using straight line-segments

+ RELU (X-0) - RELU (X-1) - RELU (X-3) + RELU (X-4)

SUM OF ALL 4 RELUs
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ACTIVATION FUNCTIONS
Many to choose from. But most use ReLU or LeakyReLU
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RELU IN 2D
model = Sequential(Linear(2,N), ReLU(), Linear(N,1))
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LINEAR, RELU, LINEAR
Linear transformations rotate, shift, and scale the activation function
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RELU IN 2D
Find extent = f(year, day of year). Click here for the code.

https://colab.research.google.com/github/halldm2000/NOAA-AI-2020-TUTORIAL/blob/master/03_FullyConnected/curve_fitting_neural_net_2d.ipynb
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INFERENCE
Once training is complete, we can load and use our model 

https://colab.research.google.com/github/halldm2000/NOAA-AI-2020-TUTORIAL/blob/master/03_FullyConnected/neural_net_inference.ipynb
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5 MINUTE BREAK
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ARTIFICIAL NEURONS
Simple equations with adjustable parameters

Biological neuron

w1 w2 w3

x1 x2 x3

y

" = $(&!'! +&"'" +&#'#)

Artificial neuron

https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7


FULLY CONNECTED NETWORKS
A given neuron is connected to every neuron in the previous layer

INPUT OUTPUTLAYER1 LAYER 2 LAYER 3 LAYER 4
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SINGLE LAYER NEURAL NETWORKS
A series expansion over basis functions 5.

&

!

/! /" /# /'0 =2
(
#( /((' + 4()

TAYLOR SERIES

FOURIER SERIES

RELU

'" '# '$ '%

sin(') *+, (-') *+, (.') *+, (/')

(! > ") ? ! ∶ "



57

TWO LAYER NEURAL NETWORKS
Learn the function and the basis functions at the same time

!

"" "# "$ "%

#

L2: LEARNED BASIS FCNS

L1: RELU BASIS FCNS
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DEEPER NEURAL NETWORKS
More layers allows for more levels of abstraction

Input Result

Input Low-level features Mid-level features High-level features

https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf

Probability
Image is
A Face

Output
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PART 2: CLASSIFICATION
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GOAL: AUTOMATED STORM DETECTION
Automatically detect and classify dangerous tropical cyclones

https://www.nesdis.noaa.gov/content/goes-east-spies-newly-formed-tropical-storm-epsilon

Epsilon
11 AM ET Oct 19, 2020
Tropical storm

NOAA: GOES-16
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COMPUTER VISION TASKS
We will start with classification, as it is simplest.
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CYCLONE CLASSIFICATION
Given images of various storms, how can we determine the storm type?

TRADITIONAL APPROACH  (like TECA)

• Search for low-pressure center
• Measure maximum sustained winds
• Classify storm by location and wind-speed

• Strengths: simple, interpretable

• Weaknesses: Fragile. Requires expert knowledge. 
Requires wind speed and pressure which may be 
unavailable. Long development time.

DEEP LEARNING

• Gather many labelled examples of each storm
• Let optimizer search for solution

• Strengths: Can use water vapor only
• No expert knowledge needed to build the software. 

Faster development. Less fragile. Works for most 
any phenomena. GPU accelerated.

• Weaknesses: requires many labelled examples. 
• Can be harder to interpret

https://www.sciencedirect.com/science/article/pii/S1877050912002141
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IBTRACS
Provides expert labels for historical tropical cyclones

https://www.ncdc.noaa.gov/ibtracs/index.php?name=introduction
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GFS ANALYSIS
Model data makes a good starting point for this task.

NOAA: GFS ANALYSIS

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs



65

MAKING A LABELLED DATASET
Download the data and convert it to desired format

Download GFS Analysis Data and IBTRACs data from NOAA

Convert GFS data from GRIB format to NetCDF
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MAKING A LABELLED DATASET
Use IBTRACs to extract labelled examples

For each GFS file, find IBTRACs storms and extract cropped regions
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CYCLONE CLASSIFICATION
Find function: category = f( water vapor image)
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AVAILABLE FIELDS
Each NetCDF field contains the following fields
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CYCLONE CLASSIFICATION
Training

http://alexlenail.me/NN-SVG/AlexNet.html

Input

MODEL

0.0
0.5
0.2
0.2
0.1
0.0
0.0
0.0
0.0

Output

TD
TS
CAT1
CAT2
CAT3
CAT4
CAT5
DS
NONE
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GPU ACCELERATION
GPUs make deep learning practical.

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = get_model().to(device)
inputs, labels = data[0].to(device), data[1].to(device)
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SUMMARY WRITER
Uses Tensorboard to keep track of training losses

%tensorboard --logdir runs 

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
writer.add_scalar('Accuracy/val’ ,  val_acc.value() ,   epoch)
writer.add_scalar('Accuracy/train', train_acc.value() , epoch)
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DATASET AND DATALOADER
Classes used to organize and return examples during training

DATASET: Holds a set of examples. (Might read them from files.)

DATALOADER: Returns a batch of examples each time it’s called

0  0  0  0  0  0  0  1  1  1  1  1
batch size = 4 batch size = 4 batch size = 4

from torch.utils.data import DataLoader
train_data = Dataset(path, inputs, outputs)
train_loader = DataLoader(train_data, batch_size=200, shuffle=True)
for i, data in enumerate(train_loader):

from torch.utils.data import DataLoaderz



S L O W FA S T !

STORAGE

DATA CACHE
Store as many examples as possible in RAM to minimize disc access

cache = Cache(loading_function, device=“cuda”, memory_cap=80)
if path in cache: return cache[path]
else: load(file, device)
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MODEL: CONVOLUTIONAL 
NEURAL NETWORKS
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A SIMPLE CLASSIFIER
A basic encoder, using convolution layers

model = nn.Sequential(
Conv2d(Cin,C, 3), ReLU(), MaxPool2d(2),
Conv2d(C , C, 3), ReLU(), MaxPool2d(2),
Flatten()
Linear(C*nrow*ncol//(4*4*4), N), ReLU(),
Linear(N, Nout))

model = nn.Sequential(
Linear(2,N), ReLU(),
Linear(N,N), ReLU(),
Linear(N,1))

Previous Model: extent = f(year, day of year)

Current model: prob of storm = f( water-vapor image)
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SIMPLE CLASSIFIER
Represented as a diagram

Input

Output

Flatten Linear

http://alexlenail.me/NN-SVG/LeNet.html
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(destination pixel)

Center element of the kernel is placed over 
the source pixel. The source pixel is then 
replaced with a weighted sum of itself and 
nearby pixels.

CONVOLUTION-2D
A small matrix transformation, applied at each point of the image
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Center element of the kernel is placed over 
the source pixel. The source pixel is then 
replaced with a weighted sum of itself and 
nearby pixels.

CONVOLUTION-2D
When we have multiple channels, learned kernels are 3d matrices
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CONVOLUTION EXAMPLE: SOBEL FILTER

$& =
−1 0 1
−2 0 2
−1 0 1

$' =
−1 −2 −1
0 0 0
1 2 1

$ = $&# + $'#

Image source: https://en.wikipedia.org/wiki/Sobel_operator
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CONVOLUTION EXAMPLE: SOBEL FILTER

$& =
−1 0 1
−2 0 2
−1 0 1

$' =
−1 −2 −1
0 0 0
1 2 1

$ = $&# + $'#

Image source: https://en.wikipedia.org/wiki/Sobel_operator
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MAXPOOL-2D
Pooling reduces the size of the image, so we can detect large-scale features
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TRANSLATIONAL INVARIANCE
Objects in nature look the same from place to place
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WHAT ARE CNNS USED FOR?
Problems with translational invariance in variance in time and/or space

Computational Physics
Invariance in 3d space

Audio and Time Series
Invariance in time

Computer Vision
Invariance in 2d space

CONV_2D CONV_3D CONV_1D
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IMBALANCED DATA
Some features occur more frequently than others

5681, 6686, 1985, 824, 798, 645, 84, 2202, 940, 270, 3280

Storm Frequency 2010Duplicate, augment, or sample with greater frequency
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REGULARIZATION
BatchNorm and Dropout

https://www.kdnuggets.com/2018/09/dropout-convolutional-networks.html
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ACTIVITY: CLASSYING TROPICAL CYCLONES
Click here to launch the notebook

https://colab.research.google.com/github/halldm2000/NOAA-AI-2020-TUTORIAL/blob/master/04_Classification/classification.ipynb


CLASSIFYING TROPICAL STORMS

Training time for 100 epochs
CPU GPU
5000s 3400 (1.5x ~1%GPU -> Problem is I/O bound) 

+cache     +cache
614 (8x)   79s  (63x ~55% GPU)

Using the GPU effectively reduces training time from 1.5 hours -> 1 minute !

Accuracy vs data quantity

f  =  90%   50%   20%   10%   0%
Acc= .91   .87   .81   .78   .66

Data quantity and quality are key for high accuracy

Accuracy vs inputs

U,v,p pwat pwat,u,v pwat,u,v,p all fields
0.85 0.91  0.93      0.94 ??

Can detect storms with water vapor alone.
But if you have additional information … use it!

My results on Google Colab using a T4 GPU

On your own: Augment and balance your samples to increase classification accuracy
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ADDITIONAL TOPICS TO EXPLORE

Learn by doing!
Data augmentation and balancing
Regularization, dropout, batch norm, 
weight decay
Skip connections and Resnets
Segmentation, detection, instance 
segmentation
Transfer learning
Multi-gpu training, data parallel, ddp
GPU profiling and tuning using nsight 
Tensor-RT for runtime optimization
Encoder-decoder, autoencoder
Anomaly detection
Generative models, gans, and vaes
Masked convolutions and inpainting
Uncertainty quantification

Explainable / trustworthy AI
Transformers
Self-supervision
Automatic hyperparameter tuning
Pytorch lightning and bolts
HPC + AI coupling
Physics informed neural nets
Deep learning with julia
Reinforcement learning
Active learning
Fast.ai
Rapids for ML
Docker, containers, and NGC
Jetson nano, edge computing
Etc.

We’ve only scratched the surface. There is much more to learn.
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SOME RECORDED TALKS I’VE GIVEN

• Frontiers of Deep Learning (2020) Recent breakthroughs in AI + geoscience

• Deep Learning Architectures (2020) Overview of major deep-learning architectures

• Machine Learning and the Future of the Earth (2020) Can we save the planet, using AI?

• NEDTalk: AI and NOAA’s Mission (2019) How AI can be used for geosciences

• AI for Science (2018/19) Prototype deep learning applications

• Nonhydrostatic Global Climate Modeling (2015) Making climate models better

https://www.youtube.com/watch?v=6lTzxW_c12E&list=PLbelYhZAAHEKQcERdFj-xJGYxLDPvC85r&index=15
https://www.youtube.com/watch?v=rAkoMnKcF80
https://www.youtube.com/watch?v=0CI1IE3k4c8
https://www.youtube.com/watch?v=wuydj91vlpc
https://youtu.be/59Xji_KWgC4
https://vimeo.com/139664312


Summary
• Deep learning is powerful

• It’s a generalization of curve fitting

• PyTorch is like GPU accelerated numpy

• Most popular DL framework for research

• GPUs are necessary for real-world apps

• We can use DL to build next-level apps

• There’s a ton left to learn

E-mail: dhall@nvidia.com
Linkedin: david-matthew-hall
Twitter: @halldm2000

Please click here to help us improve the 
tutorial ! (Two-minute survey)

mailto:dhall@nvidia.com
https://www.linkedin.com/in/david-matthew-hall/
https://www.surveymonkey.com/r/QQ53FXR
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ACTIVE REGIONS

HELIOPHYSICS
APPLICATIONS
NASA GODDARD 
ALTAMIRA & NVIDIA

Feature detection can be applied 
to detect features on the Sun and 
other astrophysical bodies. In 
particular, we can apply AI to solar 
flares and coronal mass ejections 
in order to predict the influx of 
highly charged particles on Earth’s 
atmosphere.
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SOLAR DYNAMICS
OBSERVATORY

• 1.5 TB Data / Day

• Operational Since 2010

• AIA: 10 Wavelength Channels

• 150M Images To Be Labelled

• 30k Images Labelled so far

• Coronal Holes

• Active Regions

• Sunspots

• Solar Flares

• Coronal Mass Ejections

• Filaments

SDO

AIA
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RESULTS:
CORONAL HOLES

Ground Truth
Prob of Detection

NASA Goddard
Michale Kirk, Barbara Thompson, 
Jack Ireland, Raphael Attie

NVIDIA
David Hall

Altamira
Matt Penn, James Stockton, 

SOURCE
Solar Dynamics Observatory
AIA Imager 

TARGET
Hand-crafted detection algorithm
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SUNSPOT PREDICTIONS

Predicts all 0s unless special care is taken

• Super-sample minority class 

• Under-sample majority class 

• Use focal loss

Select small crops from high-res imagery

Pos : crops w/large fraction sunspot pixels

Neg : randomly selected crops

Train conv net on small crops only

Predict on full-resolution images

Highly imbalanced dataset. Needs special care.
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Ground Truth
Prob of Detection

RESULTS:
SUNSPOTS

NASA Goddard
Michale Kirk, Barbara Thompson, 
Jack Ireland, Raphael Attie

NVIDIA
David Hall

Altamira
Matt Penn, James Stockton, 

SOURCE
Solar Dynamics Observatory
AIA Imager 

TARGET
Hand-crafted detection algorithm
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Ground Truth
Prob of Detection

RESULTS:
ACTIVE REGIONS

NASA Goddard
Michale Kirk, Barbara Thompson, 
Jack Ireland, Raphael Attie

NVIDIA
David Hall

Altamira
Matt Penn, James Stockton, 

SOURCE
Solar Dynamics Observatory
AIA Imager 

TARGET
Hand-crafted detection algorithm


