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Change Detection from Frequently Acquired Observations

§ State of the land surface can change with time 

§ Observations of land cover images are available only sequentially

§ Adapt to spatial variability 

§ Direct time-series, model (harmonic) based (Lunetta et. al. 2006, Lhermitte et. al. 2008, Kleynhans et. al. 2011, 
Anees et. al. 2015, Chakraborty et. al. 2018)

§ Cannot distinguish between types of changes; application specific bands/band ratio monitored

§ Generalized change detection approach 

§ Examine the separability of change events by exploiting multispectral behavior over time



• Extracting seasonal parameters using Fourier 
transform 

- mean, 𝜇
- amplitude, 𝛼
- phase, 𝜑

• Characteristic features of the region/ land cover 
class

• Class separability

• Time variation (k) captured from sequential 
estimation of 𝒙! = [𝜇!, 𝛼!, 𝜑!]

• Extend estimation to all bands b, 𝒙",!

Features from Satellite Image Time-Series



Sequential Model Parameter Estimation

Sequential estimation of state vector 𝒙!,# = 𝜇!,#, 𝛼!,#, 𝜑!,# with Particle Filtering 



𝒙𝒃,𝒌 𝒙′𝒃,𝒌

ℳ: Expected Stable Phase Multispectral Trend

𝒙′#,! = 𝐷(𝐸(𝒙#,!)), for all 𝑘 in training phase

𝐸: 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝐷: 𝑑𝑒𝑐𝑜𝑑𝑒𝑟

ℳ

(Across all 
bands)

Learning Expected Spectral Reflectance – Absence of Change

𝒙𝒃,𝒌 : 𝜇, 𝛼 (ℳ-all)
𝒙𝒃,𝒌 : 𝜇 (ℳ-mean)
𝒙𝒃,𝒌 : 𝑧 (ℳ-obs)



ℳ:

Multispectral Analysis at Change Point



Dataset: Change Events

• Multispectral MODIS Land surface time-series
- (MCD43A4)

• 16 day composite generated every 8 days
• 500 m
• Quality Assurance Data(MCD43A2)
• Pixel time-series of bands, band ratios
• 7 bands: 459 nm – 2155 nm

Dataset
(Region)

Event,
(No. of Pixels Selected),

Time-Series Length

Pre-Change Land Cover 
Class* and event

CR1
(v5h8) 

Wallow Fire, 
(95), 10 years

Forest Fire in Evergreen
Forest

CR2
(v5h8)  

Horseshoe 2 Fire, (60), 10 
years

Forest Fire in Evergreen
Forest

CR3 
(v6h10)

Flood (Hurricane), (45), 7 
years

Flood in Coastal Wetland

CR4
(v4h19)

Flood (Sava River),
(35), 7 years

Flooding in Cultivated
Area, Croatia

CR5
(v4h19)

Flood (Sava River),
(30), 7 years

Flooding in Cultivated
Area, Bosnia Herzegovina

CR6
(v6h10)

Coastal Land Gain, (30), 
16 years

Coastal Land Gain 
(Atchafalaya Bay)

CR7
(v5h8)

Drought, 
(35), 13 years

Drought in Evergreen
Forest

*NLCD 2016 : https://www.mrlc.gov/viewer/
*https://www.eea.europa.eu/data-and-maps/figures/global-landcover-2000-europe-geographic-view

https://www.mrlc.gov/viewer/
https://www.eea.europa.eu/data-and-maps/figures/global-landcover-2000-europe-geographic-view


Anomaly Score from Multispectral Analysis

Anomaly Score: 𝐴!= ∑"&'( |𝒙′",! − 𝒙",!|



Change Detection from Multispectral Deviation

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
𝑇𝑃𝑅 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Anomalous/change points: positive class; Non-change points: negative class; TN: True negative, TP: True 
Positive, FN: False Negative, FP: False Positive

PF estimates performs better (missed detections are more costly, false alarms within an acceptable rate)

𝒙𝒃,𝒌 : 𝜇, 𝛼 (ℳ-all) 𝒙𝒃,𝒌 : 𝜇 (ℳ-mean) 𝒙𝒃,𝒌 : 𝑧 (ℳ-obs)
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Change Event Separability from Spectral Deviation

𝒙A#,! − 𝒙#,! > 0

Time-series (at k in band b) increases 
due to change 

𝒙A#,! − 𝒙#,! < 0

Time-series (at k in band b) decreases 
due to change 

Reconstructed reflectance (𝒙)",!) at k 
greater than estimated reflectance (𝒙",!)? 

Reconstructed reflectance (𝒙)",!) at k lesser 
than PF estimated reflectance (𝒙",!)? 

Sequentially Estimated reflectance (𝒙",!)
Reconstructed reflectance: (𝒙)",!)



Change Event Separability from Spectral Deviation

841-876 nm

2105-2155 nm

841-876 nm

2105-2155 nm

NIR 
Reflectance 
Decreases 

SWIR 
Reflectance 
Increases

NIR
Reflectance 
Decreases 

SWIR 
Reflectance 
Decreases 



Interpreting Change Signatures
𝑟"=estimate (PF) (𝒙",!) – reconstruction (model) (𝒙)",!) 

Different bands contribute differently (𝑟") to the 
reconstruction error of change events

Perfect 
reconstruction

R1-R7: rank/ contribution of each band towards the reconstruction error 

NIR

SWIR



Change Signature Representation

𝜌⃗ = 𝑟"', 𝑟"*, … , 𝑟"+ ,
response at change point and post − change stages

Response (vector) for similar change events should 
have a similar angle with respect to a reference vector 

Feature/ band selection – most responsive bands (top b) or highest reconstruction error

Clustering spectral angle 𝜃 (reference vector and normalized response) 

Vector representation of deviation due to change events 
(subset of bands) with respect to a reference vector

𝜃 = 𝑐𝑜𝑠BC
𝜌⃗. 𝑢

𝜌⃗D 𝑢D

𝑢

𝑢 : reference vector 

𝜌⃗
𝜌⃗



Change Event Separability from Spectral Deviation

CR1: Wallow Fire (Southwestern United States)
CR2: Horseshoe 2 Fire (Southwestern United States) 
CR7: Drought: Southwestern United States 
CR3: Flood (Coastal Marsh, Louisiana) 
CR4: Flood (Agricultural/ Urban Area, Sava River, Croatia)
CR5: Flood (Agricultural/ Urban Area, Sava River, Bosnia and Herzegovina) 
CR6: Land Gain: Atchafalaya Delta Region

Polar coordinate representation of change vector deviations

Gaussian mixture modeling with varying k(number of clusters)
- Smallest k with lowest sum of error assignment to cluster mean
Graph Connected Components
- Graph Laplacians



Conclusion

• Multispectral deviation as change signature

• Detection improves with parameters extracted by Sequential Monte Carlo

• Change events are observed to be separable: jointly consider change event, pre-
change class

• Generalized change detection approach

• Future Work: Post change monitoring, time-varying frequency models

S. Chakraborty, S. Das, P. R. Christensen, and A. Papandreou-Suppappola, “On the Separability and Explanations of Land Cover Change Events from 
Multispectral MODIS Time-Series ”
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