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» Atmospheric Rivers (ARs):
"long, narrow, and transient
corridors of strong horizontal
water vapor transport...”
(AMS Glossary)

Numerous quantitative
definitions

but no theoretical or
community-accepted
definitions.

image source: NASA




How to identity ARS”?

River Tracking Method Intercomparison Projec

-

Atmospheric River Tracking Method
Intercomparison Project

Report of the Second ARTMIP Workshop p » Ag reement among AR deteCtlonS’
Sra;mfftiurg Maryland, April 23-24, 2018 ( Feb . 7 ’ 2 O 1 7 , 2 O ‘I 9
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A huge diversity among AR

dentification methoads

Size of detected ARs
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JUncertainty in weather even

Seducible vs irreducible

- detection

Reducible uncertainty: improving detection based on theory

Irreducible uncertainty: the atmosphere is a fluid, with no hard
boundaries

data source: Shields et al. (2018), Geosci. Mod. Dev., doi: 10.5194/gmd-11-2455-2018
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Quantifying and reducing
uncertainty in an AR detector

atmospheric rivers

* Integrated Vapor
Transport (IVT): the
total transport of
water in the
atmosphere due to
wind

« Atmospheric rivers are
prominent in IVT fields.
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Quantifying and reducing
uncertainty in an AR detector

candidate atmospheric rivers

* Pick out highest
ranked values of IVT

* Filter out values w/in
about 15° of equator

« Remove candidates
that are too small
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Input field Filter values below Filter out values in Remove small
a certain rank the tropics candidates
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For a given AR detector that operates on an input field (_i e.qg., VT),

—

what are plausible settings for the AR parameters 6

Parameter Description Range Candidate Prior(s)
P Percentile threshold for IVT" (0.8,0.999) B8, U
A Minimum area of contiguous region (1 -10*, 5.10'%) m? Lognormal, U

Ay Zonal width of tropical filter (5, 25) °N U, T




A datapbase of global AR counts for
objectively constraining AR detectors

—T1950

A database of global AR
counts — hand counted via
a simple GUI (right).
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AR detector parameters:
a Bayesian optimization problem

* What are plausible AR
detector parameters,
given the global AR
counts”?

» Given this plausible

set of parameters,
what is the probability
of AR detection?
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A probabillistic AR detector
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For a plausible set of AR detector parameters 0,

—

does uncertainty in 8 matter for uncertainty in trends?




Observed trends in A
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DJF-average Probability of AR Occurrence o App“ed to 110 years
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T European Centre for Medium-Range Weather Forecasts (2014), ERA-20C Project (ECMWF Atmospheric Reanalysis of
the 20th Century), https://doi.org/10.5065/D6VQ30QG, Research Data Archive at the National Center for Atmospheric
Research, Computational and Information Systems Laboratory, Boulder, Colo. (Updated daily.) Accessed 13 Jun 2018.
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of output:
« ERA-20C Reanalysis

» Detected global AR
counts for multiple AR

o parameter

combinations



Global AR counts: 20th century

Posterior Probability of DJF-average Global AR Count, by year
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“ositive and negative trends

Posterior Probability of DJF-average Global AR Count Trend
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Trends from MCMC samples

DJF-average Global AR Count, Colored by Trend
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Trends Depenad on Parameter
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Does this affect how we interpret
trends In the literature”?

* "increase in heavy and extreme precipitation...almost
entirely due to ARs

Gershunaov, A. et al. Precipitation regime change in Western North America: The role of
Atmospheric Rivers. Sci. Rep. 9, 9944 (2019).

* "there will be ~10% fewer ARs in the future, the ARs will
be ~25% longer, ~25% wider”

Espinoza, V., Waliser, D. Ié Guan, B., Lavers, D. A. & Ralph, F. M. Global Analysis of

Climate Change Projection Effects on Atmospheric Rivers. Geophys. Res. Lett. 45, 4299—
4308 (2018).

* “AR frequency broadens equatorward of peak historical

frequenc
Payge, A. E. {

7
Magnusdottir, G. An evaluation of atmospheric rivers over the North

e
Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res.
120, 11,173-11,190 (2015).




ARTMIP: producing severa
papers on AR uncertainty

Report of the Second ARTMIP Workshop
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summary

» Detector uncertainty matters for our qualitative
understanding of climate change

* This is an issue for multiple weather phenomena:
* Tropical Cyclones
 Extratropical Cyclones
« Atmospheric Rivers
o Likely others...?

» Bayesian methods + expert input can help
guantity detector uncertainty




Machine Leaming
(Computer Vision) for Detecting A
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People, bicycles, sidewalk, signposts, roads,
and cars are all recognized




NVachine leaming for probabilistic
AR detection
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Comparing expert counters
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