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00 | Before we begin…
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This presentation

• May discuss contents previously published in IEEE© Access journal (Hong and Song, 2020):
IEEEXplore: #9110496, doi: 10.1109/ACCESS.2020.3000557

• Describe an impact of deconvolutional layers in unsupervised autoencoder modeling
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01 | Background

How this research began?

• Fresh attempt to 'extract and predict' upcoming atmospheric events,
from large-scale remote sensing imagery 'rapidly'

• Preliminary model surveys for meso-scale weather prediction tasks

• Typhoon Eye Localization
(GlobeNet: arXiv:1708.03417)

• Next Sequence of Satellite Images Prediction
(PSIque: arXiv:1711.10644)
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GlobeNet PSIque
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https://arxiv.org/abs/1708.03417
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01 | Background

• Issue #1: Correlated models share common part which trained separately
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01 | Background

• Issue #2: A deconvolution process matters on reconstruction quality
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Source Plain

NNr PixelTCL

• Every deconvolutional process MUST produce 
checkerboard artifacts

• Furthermore, variations of deconvolutional process on 
decoder provide considerable differences with fixed 
encoder operation during End-to-End learning

• Therefore,reconstruction quality in convolutional-based 
autoencoder is highly dependent on decoder

Reconstruction results from deconv.Checkerboard artifacts from deconv. 
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02 | Methods | Related works
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Plain Deconvolution
(Zeiler et al., 2010)

Nearest-Neighbor Resize Deconvolution
(Odena et al., 2016)

Pixel Transposed Convolution
(Gao et al., 2020)



02 | Methods | Our solution
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Shift-N-Overlap Cascaded Deconvolution



02 | Methods | Overall

• An unsupervised autoencoder model can extract principal factors
and learn both key visual features and desired data distribution by itself

• A universal and versatile encoder-decoder model is demanded
for multi-purpose prediction tasks from wide observation area
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03 | Target Data | MTSAT1R/2,COMS

• Preparation of homogeneous observation dataset

MTSAT-1R: 140° E (Himawari-6/OSCAR)

MTSAT-2: 145° E (Himawari-7/OSCAR)

COMS-1:128.2° E(COMS-1/OSCAR)

Homogeneous Satellite Instruments
(MI, JAMI, IMAGER)

Image rearrangement and reprojection Final image arrangement

• Each satellite program operates on limited  operational plan (due to a durability)

• Observation area reprojection is mandatory,

due to the reconstruction tendency of void space in autoencoders

• Additional image rearrange is required due to the discrete mission orbit

• Entire Duration: 2006~2017Y(307,808 images)  /  Valid, Test: 2014~2017Y
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https://www.wmo-sat.info/oscar/satellites/view/165
https://www.wmo-sat.info/oscar/satellites/view/166
https://www.wmo-sat.info/oscar/satellites/view/33


04 | Results | Convolutional AE

• Model Training Configurations
• Model:

Convolutional Autoencoder (ConvAE)

• Loss/Metric: Mean-squared (MSE)

• Learning rate: 1e-3

• Epoch: 40

• Opt.: Adam (Adaptive Moment Estimation)

• Results
• Better performance metrics than any 

other deconvolutional models

• Fastest model convergence within epochs
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04 | Results | Adversarial AE

• Model Training Configurations
• Model:

Adversarial Autoencoder (AdvAE)

• Loss/Metric: Mean-squared (MSE)

• Learning rate: 1e-3

• Epoch: 40

• Opt.: Adam (Adaptive Moment Estimation)

• Results
• Better performance metrics than any 

other deconvolutional models

• Significant loss fluctuation is observed 
due to the model complexity
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04 | Results | Error Metrics
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• Result of Average (50 discrete cold-start) model training and evaluation
• NNr shows weak perf on ConvAE, and PixelTCL show weak perf on AdvAE



04 | Results | Yearly Circulation
• Latent Information (below is PCA-ed) can capture hourly and monthly circulation very well

Test (Y2015/Y2017)
Data: Hourly (UTC 00H~23H) | Label: Monthly (M01~M12)

Test (Y2015/Y2017)
Data: Monthly (M01~M12) | Label: Hourly (UTC 00H~23H)

Hourly
Circulation

Monthly
Circulation
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04 | Results | Hourly and Monthly Circulation
• Latent Information (below is PCA-ed) can capture hourly and monthly circulation very well

Test (Y2015/Y2017)
Data: Hourly (UTC 00H~23H) | Label: Monthly (M01~M12)

Test (Y2015/Y2017)
Data: Monthly (M01~M12) | Label: Hourly (UTC 00H~23H)
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05 | Conclusion | Contributions

• This work revealed that a change in the decoder part of autoencoder could vary

the entire learning of weather representations without changing the encoder part.

• This work is providing a previously-trained convolutional autoencoder model for 

understanding 4-channel geostationary satellite images using autoencoders.

• This work enhanced an image reconstruction performance by very unique

deconvolutional layer named ‘Kick’ to minimize checkerboard artifacts issue.
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05 | Conclusion | Future works

• Application on Real-world Prediction
using Pre-trained Convolutional AE
(currently working on radar echo image 
generation task)

• Large-scale Image Research Dataset 
Processing with Distributed-Parallel 
Computing Acceleration on
Open Research Collaboration Platforms
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Geostationary Satellite Images MAPLE Rain Echo Estimation
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Thank you for listening! Any questions?
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