Radiant MLHub: Advancing Utilization of AI Applications on Earth Observations with Benchmark Training Datasets

Hamed Alemohammad
Chief Data Scientist & Executive Director
Radiant Earth Foundation

2nd NOAA Workshop on “Leveraging AI in Environmental Sciences”
February 4, 2021
Mission
Empowering organizations and individuals globally with open Earth observation training data, standards and tools to cultivate a global community focused on machine learning and Earth observations to meet the world’s most critical challenges.

Vision
Leveraging machine learning and Earth observation for positive global impact
Motivation

• Increasing volume of data
 • New satellites, in situ sensors, and models
 • Governments and commercial entities

• Advancements in Machine Learning techniques
 • Data-driven and fast iterations
 • Capable of detecting complex and non-linear relationships

• Availability of cloud services
 • Bringing computation to data
 • Scaling resources on-demand
 • Serverless designs
ML Tasks in Earth Science

Source: Reichstein. et al., 2019
Existing Workflows

Training Data 1 -> Training_1 -> Model_1 -> Prediction_1

Training Data 2 -> Training_2 -> Model_2 -> Prediction_2
Ideal Workflow

Benchmark Data

Training_1 → Model_1 → Prediction_1

Training_2 → Model_2 → Prediction_2

Training_3 → Model_3 → Prediction_3

Model Benchmarking
ImageNet

- 14 M annotated images including 1 M with object bounding boxes.
- 20 K categories of objects
- Open access
- Annual competition 2010-2017
LandCoverNet

- First geodiverse LC training dataset
- 130M labeled pixels at 10 m resolution
- 7 classes based on annual time series

landcover.net
WeatherBench

- A benchmark dataset for data-driven weather forecasting (based on ERA-5)
- 14 variables including
 - Temperature
 - Relative Humidity
 - Vorticity
 - Precipitation
 - Cloud Cover
 -
- Evaluation metrics and baseline models
Training Data Challenges in Earth Science

Geospatial Training Data Catalogs:
- Lack of Geo-Diversity
- Scarce data sources
- Data Accessibility
- Inter-Operability
- Machine learning-readiness

Result of Gaps in Training Data Catalogs:
- Biased or incorrect results
- Inability to capture wide range of possible outcomes in space and time
Challenges for ML in Earth Science

Advancing AI for Earth Science: A Data Systems Perspective
AGU EOS, November 2020 (link)
ML Commons for Earth Observation

Hub
- EO Training Datasets
- ML Models
- Competitions
- Image annotation + ground-referencing

Community
- Convenings to develop standards for ML on EO
- Interoperability of datasets
- Technical Working Groups
- White Papers

Education
- EO market information
- Best practices on use of ML and EO
- Speaking engagements
- Media outreach
Radiant ML Hub

ML Hub Training Data Catalogs

Radiant Training Data Storage

External Training Data Storage

STAC API

Dashboard

Auth0

Public API Endpoint

Python Client

Web Portal
Radiant MLHub Repository

- Each dataset has a DOI with version and citation

- FAIR data principles
 - Findable
 - Accessible
 - Interoperable
 - Reusable
Competitions

Past:

- Crop type classification in Kenya
 Multiband and temporal Sentinel-2
- Cloud labeling
 Optical data from Sentinel-2
- Tropical Cyclone Wind Speed Estimation
 Temporal observations from GOES

Future:

- Crop Monitoring in South Africa (Summer)
 Multiband and temporal Sentinel-2 and Sentinel-1
What’s coming up?

• Enhance training data repository
 • Develop a Python Client (alpha version released)
 • Build integration with NASA EOSDIS CMR catalog

• Develop an ML model repository
 • Commit your model in GitHub
 • Register on Radiant MLHub
 • Share with the world!

• Generate new training datasets
 • Fusion of SAR and multi-spectral data
Thanks!

www.radiant.earth

www.mlhub.earth

MLHub Slack Channel:
bit.ly/MLHubSlack

Funding Support

ON
OMIDYAR NETWORK

BILL & MELINDA GATES foundation

NASA
Partner

giz Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

SCHMIDT FUTURES