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NASA Science Mission Directorate (SMD) Artificial Intelligence and Machine Learning
(Al/ML) Initiatives

SMD's Strateqy for Data Management and Computing for Groundbreaking Science 2019-2024 Report identified that
AlI/ML has yet to be fully appreciated and understood by SMD and science disciplines

Activities:

* |dentify areas of natural collaborations on Al/ML across SMD

« Conduct expert workshop on Al for science

« Explore industry partnership to transform data systems and leverage open science data

« Develop a roadmap to leverage large volumes of data and computation to accelerate Al/ML across NASA science
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https://science.nasa.gov/files/science-red/s3fs-public/atoms/files/SDMWG%20Strategy_Final.pdf

ESD Programs Supporting Al/ML

ESD has invested in AI-ML across the Division
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ESDS Al/ML strategic goals

Goal 1: Augment scientific data stewardship processes

Goal 2: Maximize information and knowledge discovery capabilities

Goal 3: Enable sharing, and interoperability of Earth science Al training data and models

Goal 4: Increase engagement with commercial, academic, other agencies, and international partners

Goal 5: Foster Al expertise within the program




Al/ML in Earth Science

—AGU —AMS —IEEE —SPIE

Number of Papers
g

- /\//‘,,f——/\/

2009 2010 20m 2012 2013 2014 2015 2016 2017 2018 2019

)
8

Year

Rapid adoption of Al/ML by Earth science researchers




Types of data used in Earth Science supervised machine
learning papers
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ESDS archive is underutilized by Al applications, and new data curation activities are needed to address the lack of training data @




Al and Data Systems




Data systems as adopter of Al

Improve efficiency of NASA's data systems operations

» Increase opportunity for researchers and commercial users to access/process PBs of data quickly without the

need for data management

* Ensure users find right data for their problem
» Minimize user burden to access data

» Enable users to extract new knowledge/information from archives
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Data systems as enabler of Al
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Data systems Al architecture design
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Current projects/activities

Maximize information and knowledge discovery capabilities — computer vision
Novel search of archived data

Augment data stewardship processes — NLP/Knowledge Graph
Keyword assignment
Metadata curation

Accelerate Al for Earth science - Al-ready data

Labeled dataset generation/stewardship
Data science challenges
Labeling tools

Enabling Platforms
Cloud/HPC
Deployment pipeline

Partnerships
Industry/Academia involvement
Workshops/Hackathons




Ongoing Al/ML activities

Labeling tool
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Leveraging Al+CSDAP+Prototypes+Cloud for COVID-19 Dashboard
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Resources

Image labeler

Phenomena portal

Hurricane intensity estimation portal
COVID-19 dashboard

IMPACT website

ACCESS 2019 projects

https://labeler.nasa-impact.net/
http://phenomena.surge.sh/
http://hurricane.dsig.net/
https://earthdata.nasa.gov/covid19/
https://impact.earthdata.nasa.gov/

https://earthdata.nasa.gov/esds/competitive-programs/access

Thank yOu Manil Maskey
manil.maskey@nasa.gov




Backup slides




Maximize information and knowledge
discovery capabilities




Increasing Earth science data archives require non-traditional approaches to data management

Data driven technologies to provide advanced search capabilities

Machine learning-based approach - an enabling data driven technology to provide automated detection
of Earth science events from image archives

Catalog of events can provide a novel way to explore large archives of data

Discover and explore Earth science data archives around events using machine learning (ML)
techniques
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Transverse cirrus bands
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Phenomena Detection Portal

Welcome to the

Phenomena
Detection Portal
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Augment data stewardship processes
Automated keyword assignment




Why?

Assigning science keywords is currently a manual
process, which is prone to human error and
inconsistencies.

Metadata managed across a network of multiple data
centers (i.e. keywords not assigned by a central entity)

Keywords may be assigned by non-subject matter
experts (SMEs)

Improve metadata quality

Provide objective and consistent approach to keyword
assignment

LIS/OTD 2.5 Degree Low Resolution Annual Climatology Time Series (LRACTS) vV2.3.2015

CMR Dataset Title

and Description

Abstract

The LIS/OTD 2.5 Degree Low Resolution Annual Climatology Time Series (LRACTS) consists of
gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient
Detector (OTD) and Lightning Imaging Sensor (LIS). The long LIS (equatorward of about 38
degree) record makes the merged climatology most robust in the tropics and subtropics, while
the high latitude data is entirely from OTD. The LRACTS dataset include annual flash rate time
series data in MP4 format.

DOI
10.5067/LIS/LIS-OTD/DATA306

Science Keywords

EARTH SCIENCE ~ Atmosphere  Atmospheric Electricity  Lightning

EARTH SCIENCE ~ Atmosphere Weather Events  Lightning




Approach - build word embeddings

Date Published
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Automated keyword assignment

Word2vec
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word2vec classifier

~—> Training flow —> Inference flow = Training and Inference flow




Deep Learning-based Hurricane
Intensity Estimator
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