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• Object Detection- Artificial intelligence to automatically detect 
major objects of interest in the satellite imagery- Result analysis 
such as object size and type

• eXplainable AI (XAI)- Explainable artificial intelligence for the 
reliability of analysis results- Reliability verification of object analysis 
results by explainable AI

• Semantic Segmentation- Semantic segmentation for analysis of 
topography shape, type, and features- Smart land-use analysis by 
terrain features

• Super Resolution- Increasing resolution of satellite imagery using 
artificial intelligence- Performance improvement of analysis 
technology by applying super resolution technology

• Change Detection- Technology for automatically detecting changed 
areas and objects using artificial intelligence- Detecting changes of 
terrain, buildings, roads, etc. and analyzing the extent and types of 
changes automatically

yejichoi@si-analytics.ai
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Deep learning + meteorological satellite data
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NOAA Data Volume graph, Courtesy 
Steve Del Greco & Ken Casey, NOAA/ 
NCEI (via Jeff de La Beaujardiere), 2016



Motivation
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ESMR
(electrically scanned 

MW radiometer)

1972~1983
✓19GHz (Nimbus-5)
✓37GHz(Nimbus-6)
✓Resolution :25km

SMMR
(scanning multichannel

MW radiometer) 1978~1994
✓6.6,10.7, 

18, 21, 37GHz
✓Resolution : 30~155km 

SSM/I->SSMIS
(Special Sensor MW/ 

Imager(Sounder))

1987~pres.
✓SSM/I (GHz): 19.35, 
22.2(V), 37, 85.5(H/V)  
✓SSMIS (GHz): 
SSM/I+50.2(H), 52.8(H),  
53.596(H), 54.4(H), 55.5(H), 
91.7(V/H), 150(H),  
Sounding Channels
✓Resolution : 12.5~25km

AMSR-E(AMSR2)
(Advanced microwave scanning 

radiometer)

2002~2011/2012~
✓6.925, 7.3, 10.65, 18.7, 
23.8, 36.5, 89.0 GHz
✓Resolution : 4~43km 

TMI 1997~2014
(TRMM microwave imager)

✓10, 19, 21(V), 37, 85 GHz 
(H/V)
✓Resolution :7~50km

AMSU 1998~pres.
(Advanced Microwave 

sounding Unit)

✓A : 23.8~89 GHz-15ch
✓B : 89~183 GHz -5ch
✓Resolution : 15~45km

GMI            
(Global precipitation 

Measurement)

2014~pres.
✓10.65, 18.70, 23.8, 36.5, 
89.0, 166, 183 GHz
✓Resolution : 5~25km

ATMS
(Advanced Technology 

Microwave Sounder)

2011~pres.
✓23.8~183.31 GHz –21ch
✓Resolution : 15.8~74.8km

MADRAS
(Microwave Analysis & 

Detection of Rain & 

Atmospheric Structures)

2011~pres.
✓18.7, 23.8(V), 36.5, 89.0, 
157.0 (H/V) GHz
✓Resolution : 15.8~74.8km

Precipitation retrievals from space



Global precipitation measurements (GPM)

7

ATMS

SSMIS

AMSU

AMSU

ATMS

MADRAS

AMSR2

GMI

GPM Constellation Status Reference satellite 

with DPR (radar sensors)

The Global Precipitation Measurement (GPM) mission is an 

international network of satellites that provide next-generation global 

observations of rain and snow. (initiated by NASA and JAXA)

IMERG products: every 30 min global precipitation measurements



8

Yonsei’s precipitation retrieval algorithm

WRF simulation 

with MP8

WRF simulation 

with MP17

WRF simulation 

with MP16

WRF simulation 

with MP10

Calculation of Z profiles 
with hydrometeor profiles

3-D precipitation fields 

over PR scan strips

WRF simulation 

with MP28

TRMM PR 

observation

Matching Z profiles 
over PR/DPR scan swath

)|()()|( RTRTR bb PPP 

[Bayesian Inversion Method]

The probability of a 
certain rain rate, R, 

from CRM 

The probability of 
observing the TBs given 
the rain rate from RTM

[Constructing a-priori database]

Choi, Yeji, Dong-Bin Shin, and Minsu Joh. "Assessment of WRF microphysics schemes in simulation of extreme precipitation events based on microwave radiative 

signatures." International Journal of Remote Sensing 39.23 (2018): 8527-8551.

Choi, Yeji, et al. "Passive Microwave Precipitation Retrieval Algorithm With A~ Priori Databases of Various Cloud Microphysics Schemes: Tropical Cyclone 

Applications." IEEE Transactions on Geoscience and Remote Sensing 58.4 (2019): 2366-2382.



Yonsei’s precipitation retrieval algorithm
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Choi, Yeji, Dong-Bin Shin, and Minsu Joh. "Assessment of WRF microphysics schemes in simulation of extreme precipitation 

events based on microwave radiative signatures." International Journal of Remote Sensing 39.23 (2018): 8527-8551.

Choi, Yeji, et al. "Passive Microwave Precipitation Retrieval Algorithm With A~ Priori Databases of Various Cloud Microphysics 

Schemes: Tropical Cyclone Applications." IEEE Transactions on Geoscience and Remote Sensing 58.4 (2019): 2366-2382.

➢ TB histogram depending on rain type

10.65V 10.65H 18.7V

18.7H 23.8V 36.5V

36.5H 89V 89H

10V 10H 19V

19H 21V 37V

37H 85V 85H

Stratiform
convective

✓ Emission and 

scattering 

relations

✓ TB-R relations depending on rain type



Rain-type segmentation02
Choi, Yeji, and Seongchan Kim. "Rain-Type Classification From Microwave Satellite 

Observations Using Deep Neural Network Segmentation." IEEE Geoscience and Remote 

Sensing Letters (2020).

yejichoi@si-analytics.ai
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Motivation Convective and Stratiform

Pradeep K. et al.,2016

Stratiform Convective

- Vertical air motions are weak
(mean upward air velocity:~0.2m/s)

- Below the freezing level, melting occurs 
in an ~500m thick layer.

- Relatively small rain drops (D~1mm)
- Hundreds of kilometers in scale

- Strong updraft (1~10m/s)
- Melt rapidly below the 0⁰C
- Large raindrops (D>2mm)
- A few km to about 30 km in scale

Separating convective and stratiform (C/S) precipitation types is very important 
for passive microwave rainfall retrievals. 

✓ C/S separation algorithm using the combination of 19, 
37, 85 GHz data (Hong et al., 1999)

✓ Precipitation type classification method using 37GHz 
observations  (Jiang et al., 2018)

✓ Using AdaBboost (Adaptive boosting algorithm) and 
LDA (Linear discriminant analysis)- Machine Learning 
Technique (T.Islam et al., 2015)

✓ Using deep learning technique-fully connected neural 
network (V. Petkovi´c et al., 2019)



Dataset  preparation

12

Brightness temperature(TB) fields (input)

Rain type from Radar reflectivity (label)

related to the gross amount of hydrometeors 

in the vertical rain column 

related to the accurate vertical structures of 

precipitating system 

Precipitation Radar

Observations

(DPR)

Passive microwave

Observations

(GMI)

Input(n, 40,40,10)

: TBs for 9 channels, surface type

Label(n)

: Rain rate 

➢GPM observation

- 2016.01~ 2018.12 ( # of data:~17,000 (6TB))
- subset : Region(120E-175E/5N-55N), 40*40,

# of data: 59,210
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Dataset  preparation
GPM GMI Specification

GPM DPR Specification



Dataset
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- 2016.01~ 2018.12 ( # of data:~17,000 (6TB))
- subset : Region(120E-175E/5N-55N), 40*40,

# of data: 59,210 
over 50% of raining pixels
over 10% of raining pixels
More than 1 raining pixels

DATA SET-I

Original TBs from 
GMI observations PCTs for 4 chs

The TBs are significantly different 

depending on the surface types
The TBs between rain types at

channels 8–13 are more distinguishable

Polarization corrected temperature



Model architecture
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➢ RTC-U-net (convolutional networks) ➢ RTC-fcNN
(Fully Connected Neural Network)

NR

ST

CV

OT

●●● ●●●

1024→512 → 256 → 128 

→ 64 → 32 → 16 → 8

We received the best model after 94 epoch, and it took 32.9 min for RTC-U-net. 

For RTC-fcNN, the best model was obtained after 84 epoch (124.7 min). 

We used four KIST NEURONs GPU system (NVIDIA Tesla V100 with NVLINK) for training. 

Loss: categorical cross-entropy loss

Activation: ReLU

Optimizer: Adam



Results
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RTC-U-net, provides comparative results with the RTC-fcNN.

→ It shows the CNN technique is efficient to retrieve rain type for the entire image at once.

The scores of ST and CV shows a comparative result.

→ although the training data set has a dominant number of instances for the NR class.

The results with PCTs is similar despite significant PCT differences depending on rain type.

→ The PCTs are the linear combinations of TBs at two different channels, these linear 

relations is trained in the training process with only nine channels of observed TBs.

RTC-fcNN input: each pixel over an input image of RTC-U-net

→ The number of RTC-fcNN input data is multiplied with the number of pixels in the input 

image for RTC-U-net. 

→ The results from RTC-fcNN with DATA SET-III are not significantly compromised with the 

reduced number of training data set.

RTC-U-Net DPR rain type DPR rain rate



Conclusions
▪ We proposed two different DNNs: RTC U-net and RTC-fcNN, for rain type classification for all 

surface types.

▪ RTC U-net based on segmentation technique with CNN showed effective results.  Moreover, 

the CV system's small cells are well distinguishable, although the ST system surrounds it.

▪ The RTC-fcNN with eight hidden layers showed a comparable performance although it has 

simple architectures. However, the training time is four times longer than RTC-U-Net.

▪ Rain type has highly imbalanced distributions, and NR usually has many more instances than 

the other classes. The results showed the accuracy is depending on the number of instances. 

We also checked the results with a balanced data set. However, there was a trade-off 

between missed detection and false alarm showing the missed detection was reduced while 

the false alarm was increased.

▪ Although PCTs are good criteria for raining areas and scattering signatures, we confirmed that 

the effect of PCTs as an input feature for DL is limited.

17



Precipitation retrievals03
Using same data with rain type classification but using all 13 channels of GMI

yejichoi@si-analytics.ai

PMW-PrecipNET: Precipitation retrieval based on Convolutional Neural 
Networks from passive microwave observations



Model architecture
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➢ Ensemble process for the inference step

➢ Evaluation metric

:for the precipitation location 

:for the precipitation rate

➢ U-Net based PMW-PrecipNET architecture

Optimizer: Adam
Activation function: Elu
Drop out: 0.5

➢ Training data re-sampling method using 5-fold cross validation

For training: Y2016-2018



Results
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PMW-PrecipNet GPROF

→The performance improved the most over land among the three surface types.

R2 Ocean Land Coast

PMW-PrecipNet 0.88 0.8 0.82

GPROF 0.74 0.52 0.44

→ PMW-PrecipNET showed more detailed feature

Averaged 
DPR 

PMW-
PrecipNet

DPR Gprof

GPROF(Goddard Profiling) algorithm: 

GPM GMI Radiometer Precipitation Profiling L2A products 



Results
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↓

↑
↓

↓

➢ Channel effect on results 

CH6 : the most positive impact on the results. The scattering channel is important for the rain rate accuracy.

CH 1-2: the negative impact on the precipitation location due to their lower resolution.



Conclusions
▪ We propose PMW-PrecipNET, a data-driven passive microwave retrieval algorithm.

▪ The  results showed  that  the  proposed  algorithm performs  well  for both ocean  and  land 

surface  types  without the separate processes according to surface types. 

▪ The results  show  that PMW-PrecipNet provides  19 % of the improved correlation with Dual 

Precipitation Radar compared to the operational GPM precipitation retrieval algorithm. 

▪ This study showed the potential of  a deep  learning  approach to retrieve precipitation without 

empirical engineering for constructing an a-priori database.

▪ For further study, we applied this method for global precipitation retrieval and examined the 

regional differences.
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Precipitation forecasting04
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HPC Cluster-based User-defined Data Integration Platform 
for Deep Learning in Geoscience Applications (submitted in computers and geoscience journal)

- GEO-DIP architecture



Heavy rainfall prediction from satellite and radar observations
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Radar
observations

True

After 1 hour After 2 hour After 3 hour

Radar
Himawari
+Radar

Radar
Himawari
+Radar

Radar
Himawari
+Radar

2019-07-26  

15:00

2019-07-26  

18:00

2019-07-26 

21:00

2019-07-27

00:00

2019-07-27

3:00

- The results with only radar data can not predict the heavy rainfall 

development and extinction and the heavy rainfall region is much 

wider than the true.

- The results with radar and Himawari data together show similar 

patterns and follow well to precipitation system development



Take home message
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- Recently, deep learning techniques are increasingly used in the weather and climate 

community with various applications.

- Earth system data can be considered ‘big data,’ and we should consider how to prepare

‘AI-ready data’ using ‘big earth data.’

- There is a various observed data type for the same atmospheric phenomenon from multiple 

sources.

- Temporal and spatial resolution and coverage

- The physical relations between different atmospheric variables

- The observation characteristics (Indirect/direct, instantaneous/cumulative)

- When the supervised learning method is adopted, we should carefully consider which data can 

be a ground truth and the quality evaluation.

- The high-resolution weather and climate data need big memory in the training process; we 

need to solve GPU memory limitations. For this, domain scientists and machine 

learning/computer scientists should collaborate.
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