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Some project objectives

* DATA: Provide comprehensive database of drought indicators and
the United States Drought Monitor (USDM)

* ANALYSIS: Use the database to quantify the relative importance

of each indicator for the USDM drought by location and time of
year

* UTILITY: Per user requirements and purpose, provide an
importance-ordered list of indicators, either the full set or a
reduced one that best and adequately represents the USDM




USDM weekly maps
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Pilot study: Using inputs indicators of CPC objective blends

Objective Short-Term Drought Indicator Blend Percentiles
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* CPC objective drought blends use 5-6 indicators, for short-term or for two different long-term regions

reproducing the USDM2”

Pilot study question: “What are the relative importances of the CPC objective blend inputs in
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Schematic of data flow and analysis

* USDM considered for the period
2006-2019 (input data-based)

Toward percentile calculation,
create reference historical arrays for
each input, month, and spatial unit

*  We try mutual information (M),

and machine learning celEae Analysis /
) data: Inputs Training /
techniques: Neural Network and target prediction

Create data
stacks of input

(NN) and Random Forest (RF)

* Relative importances of inputs e
calculated in each technique are HETRELE
similar to the CPC blend
“weights”

* MI and RF techniques have their own inherent technique for calculating these
importances
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Mutual Information-based analysis

(a) CPC inputs from all Blends

* Mvutual information (M) 0.35
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* calculates common information
entropy between USDM and input

* calculated independently for each

Fractional informations

input indicator

* uses only the data — unlike machine
learning that also involves model /s
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Example spatial maps: fractional info & most important input

PMD! : Fractional info of USDM drought 0.6 Input importance rank 1 for USDM drought categories
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Normalized Fractional Information vs. CPC Blend weights

(b} CPC Long-term Blend inputs (c) CPC Long-term Blend inputs
(a) CPC Short-term Blend inputs (Western Formulation) (non-Western Formulation)
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CPC Blend is a linear model plus a mapping to categories,

while the mutual information-derived NFI considers all nonlinearity P
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Example NN with one 16-neuron intermediate layer:

Training confusion Matrices for example inputs and spatial domains

CONUS, all inputs

Western domain, Western formulation inputs

Non-Western domain, all inputs
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* High misclassification levels, especially at extreme drought categories, likely due to

acceptable confusion matrices?

* Can a technique unaffected by class imbalance (e.g., random forests) provide

class imbalance and remediable by category-weighted loss functions
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Random Forests & its implementation

* About Random Forests:
* Random forest technique considers an ensemble of decision trees
* Each decision tree considers a random bootstrapped set of training examples
* For classification, ensembling done through majority vote

* Our implementation:

* |Initial Stratified Shuffle Split of all data into cross-validation and out-of-sample
sets

* A stratified K-Fold cross-validation training with 3 folds
* Further out-of-sample evaluation

Each tree considers ALL input features
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Cross-validation Confusion Matrices for Random Forests

Perfect simulation of exact drought category: see "one-to-one” line !

RF Training Confusion Matrix:

4 RF Training Confusion Matrix:
PC long-term blend inputs (Western)
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RF Training Confusion Matrix:
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Out-of-sample Normalized Confusion Matrices for Random Forests

For majority of true labels, correct prediction occurs and seen along the "one-to-one” line

RF Test Normalized Confusion Matrix:
CPC all inputs, CONUS

RF Test Normalized Confusion Matrix:
PC long-term blend inputs {Western)

RF Test Normalized Confusion Matrix:
CPC all inputs, non-West
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But adding this out-of-sample into previous slide’s training set to create
new bigger training set again gives a perfect prediction!
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Random Forest-based importances vs. CPC Blend weights

Relative Importances

Relative Importances
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Summary & ongoing work

Mutual information-based importance measures are importance reference points for
machine learning technique-based measures

* We have developed a library to obtain combined mutual information of any set of
indicators with USDM for ongoing investigation of the incremental utility of inputs

Class imbalance hampers training in neural network, and potentially remedied by
category-weighted loss functions

* We are testing out these coded category-weighted functions and their predictions

Excellent prediction of random forests before pruning generalization is highly
encouraging for obtaining similar prediction levels using category-weighted loss
functions in hyperparameter-tuned neural network (and its input relevance calculation)

Input indicators: We are acquiring and processing additional inputs (100+ that go into
the USDM, modeled products, remotely sensed products etc.)
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