Satellite data use at NOAA/ESRL for Rapid C
Refresh analysis and forecast systems &M

Experimental / future

Geostationary GLM lightning data

« GOES cloud-top pressure Cloud-top cooling rate

« AMVs (GOES16%) Polar orbiter cloud products
* IMS snow cover product AOD, Smoke Mask (NESDIS)

Soil moisture

4-H FORECASTS  — OBS

Amanda Back, CIRA NOAA/ESRL (amanda.back@noaa.gov)
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Do we know that this product exists?

« Will the data be operationally available at low latency?

* Will use of the data increase computation time (e.g., expensive pre-
processing)?

« Does evidence indicate its use will be impactful (e.g., inclusion In
global model)?

Do we have the resources to test the data, and, if applicable,
develop algorithms?

* Do tests indicate the data ingest is beneficial (improved skill score;
Improved forecasts for stakeholders, such as aviation)?

* Are the data reliable?
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Resources O :
 More people and computer time needed to ng0|ng or
thoroughly test products, even those that
already exist/are known to us fUtU € needs
« (Good products come online but much work to "
leverage (bias/error, obs. operator/adjustment fOr Satelllte

scheme, long testing time periods, ...) data use
* Pipeline to operations
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| and/sea surface Ongoing or Info. In the vertical

* Need high-res, real-time

+ 1-km snow cover future needs

 Fractional sea ice

« Higher-resolution green. f()r Sateuite

fraction
data use

Many sat. products are
2D

B Model fields are 3D
Cloud-top pressure (for
ex.) 2D but gives useful
height info
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* Tues, 1:15 pm: Smoke and Fire Panel (R. Ahmadov)
 Weds, 10:30 am: Clouds and Winds Panel (S. Weygandt)

 Weds, 4:45 pm, poster session:
« Use of satellite cloud product data for HRRR and RTMA cloud

analysis (S. Weygandt)
« Assimilation of GOES-16 ABI, N20 CrIS-FSR/ATMS (including

Direct Broadcast) in RAP version 5 (H. Lin)
« Assimilation of GOES-R GLM Lightning Data and Cloud-Top

Cooling Information in HRRR (A. Back)
* https://rapidrefresh.noaa.gov



NWP and Assimilation -
(Geophysical Parameter

James G. (Jim) Yoe

NOAA/NWS National Centers for Environmental Prediction
Satellite Proving Ground Summit

College Park, MD - February 24, 2020



Background - NWS Infrastructure Based on:
The Forecast Process

Science &
Technology
Integration

Analyze, Forecast, & Suppor

Central Local
Guidanc orecasts

Central
Processing




My “User” Perspective

> What | Do (my job)
> Coordinate Obs, ST/l for National Centers (9 of them)

> Research Transition Manager for NCEP
> Joint Center for Satellite Data Assimilation
> Develop, Test, & Demonstrate methods/infrastructure to
Accelerate/Improve use of satellite data

> What | Want to Accomplish (my mission)

> Improve Service Delivery:
> Assimilate more (sat) obs better for more accurate NWP
> More useful forecast products at Centers, WFOs, RFCs
> Improved Decision Support to government agencies,
Individual citizens, and everyone in between

National Weather Service



Geophysical Parameters

> Radio Occultation Profiles (bending angle)
> Atmospheric Motion Vectors (Geo and Polar)
> Surface properties (Land, Ocean, Cryosphere)

> Ocean Surface Winds, Altimetry
> Vertical profiles of horizontal wind (DWL)
> Atmospheric Chemistry and Aerosols

. A, ~°‘Iw£',. . i
O Natona weather Service



Challenges

> Recognized and Addressed
> 0O2R is necessary for R20

> Acceleration requires common tools, efforts
> Recognized but not Addressed

> DA Development and Testing requires ever
more HPC
> \What | Lose Sleep Over

> 02R is NOT sufficient for R20
> QObs, DA, & Model compete for implementation
> Faster planned dev of DA(JEDI), model (UFS via
EPIC) and obs (small sats, commercial) not
complemented on implementation side

)Eod  National Weather Service




E.S.NAVAL Motivation — Navy Requirements

ESEARC

weorsion for EQ/Aerosol Research

» Atmospheric environment (aerosols, clouds) can have
a significant impact on visibility and EO conditions:

« Passive sensors: Visibility for operations;
EO/IR sensors, satellite sensors

* Active sensors: Directed energy; laser
communications; laser radar; precision guided
munitions illumination

Directed Energy Night Vision

Goal: Measure, model, and predict the impact of the environment on naval
operations, and EO/IR sensors and weapon systems
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Current LEO Constellation for Aerosol DA

*MODIS: Terra+Agua, Collection 6.1 Dark Target + Deep Blue
*VIIRS: NOAA Enterprise AOD, NPP (preparing to use N20)

*AVHRR: ACSPO MetOp-A and MetOp-B, ocean-only
*6-hourly 3DVAR: There is redundancy, but less than you'd think!

Current NAVDAS-AOD polar
constellation (per 24 hours)

200000
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[—
Counts Obs. Used
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m SNPP NOAA20 = POLARv2

MTA
2019-03-15 00:00

AOD
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Contribution of GEO to Aerosol Model Skill

LABORATORY

 AERONET observations over East m All-Dailymean  m All-Subdaily
Asia during Sp|ng 2016 Clear-DailyMean = Clear-Subdaily

« GOCI (Yonsei v2 AOD) and NAAPS o,
sampled to match S 0.6
*“subdaily anomaly” calculated by 2°®

0.07

< 0.04

subtracting daily mean at each ~ 003 |y 16%

0.02

location from each observation 001 8% 7%
*“Clear” excludes partially cloudy days o 600 o e

Hyer et al., JCSDA 2018

h NP

Subdaily variation is a 10-20% residual in this region

Satellite observations show similar variance to AERONET

NAAPS global model has smaller variance overall, much less subdaily variance (more with GOCI)
Daily mean matters most-- does GEO give a better daily mean?




E_S.NAVAL Contribution of GEO to Aerosol Model Skill

ESEARC
LABORATORY

* GOCI (Yonsei v2 AOD)
filtered using built-in QAP
* Upper left: 10LST
*(AM LEO orhit)
* Lower left: 13LST
*(PM LEO orhit)
*Right: Use entire day
* Repeat looks drastically
increase available ke et
coverage! T A
- Large benefits available e a2 LE ST iR
even for coarse models!

"Hyer et al., JCSDA 2018

0.40 050 0.60 0.70 0.80



E_S_NAVAhJ Choosing satellite products for Assimilation

ESEARC
LABORATORY

* Lots of products available-- top to bottom at right:
GOCI, AHI MRM, AHI ESR, MODIS DT, MODIS DB,
MODIS MAIAC, MISR(left), VIIRS SNPP Enterprise
(right)

 Are they available in near real-time?

*Research products push the science, NRT products
get used for operations

Do they verify well?

*Optimally independent verification including
comparison with current

* Do they include information to refine uncertainty
estimates?

AHI MRM GOCI

AHI ESR

MODISDB  MODIS DT

MISR / VIIRS MODIS MAIAC

0.00

19 May 2016 20 May 2016

Mormning

0.40

Afternoon Morning Afternoon

0.80 -1.20 o 1.60
Aerosol Optical Depth (AOD)

“ACP 2019

Choi et al.

2.00



E‘S'”AVAk.J Satellite product uncertainty-- and its validation!

ESEARC
LABORATORY

 Uncertainty comes from many sources— .
many not readily stratified

|——MISR vs. MAN

o7 ——MISR vs. AERONET
30 ——MISR vs. MAN

« The mathematics of radiance inversion for HE
retrieval generates an uncertainty i =

* MISR uses this directly to estimate per- |
pixel uncertainty (Witek et al., top figures) ' s | | 8

combined MISR and OBS uncertainties

Witek et al. JGR
2019

0 0.5 1 1.5 2 25 3 -4 -3 -2 -1 0 1 2 3

» Uncertainty can also be empirically QMt s~ Ton8)/ WNCipss
. - c- . =3 points )
estimated from verification 5 5 06— A0 20D
. ' ' 5 O 38" percentile ] ' |
Some MODIS products include this o 0'5#1()0586;056%) N~  NRL/UND L3
(Sayer et al., bottom left) g |2 O e A8 .
- Stratifies only by retrieved AOD and AMF < 3F o  95"percentile 4 & % s o Mis-Lottuaes
: . L - 2x(0.086+0.56Tyy) T ®™: o pllsitimnen
- Can we make a skillful uncertainty resolved “x .t lwS? o - plsrrregiis e s
on ancillary characteristics? & 2 N o -
*(example: by region, bottom right) %
e ool .
%.0 0.5 1.0 1.5 2.0 2:5 3.0 ? 0.0 0.2 0.4 0.6

MODIS 550 nm AOD
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Final Slide

S.NAVAL
ESEARC

LABORATORY

1. Resolution and uncertainty trade

off for many types of retrieval— who
will manage that tradeoff
(developer or user)?

mproving satellite retrievals Is a

_ U.S.NAVAL
job that evolves-- but does not end!

nformation in_tc_) the model is a ES EARC
function of ability to resolve LABORATO RY

uncertainty— data assimilation must

always “assume the worst” about THANK YOU!

the observations!
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NWP/Data Assimilation Part Il:
Geophysical Parameters

Kyle Hilburn
24-Feb-2020



@[RA
Challenges

e Observations

* Big data: many small improvements from a large number of observations
makes for a big total improvement

e Models

* Coupling: more Earth System components means many more interactions

e Data assimilation
* Algorithms: becoming more complex and application dependent



@IRA
Opportunities

* Observations
* GOES-R Series: untapped potential for snow, dust, smoke, and fire

* Unmet need: latent heating for convective-scale forecasting in locations
lacking good ground-based radar coverage

e Other technologies (e.g., hyperspectral, UV, ...)

e Data assimilation

* Machine learning
 Humans develop imagery, machine learning uses imagery
* Forward operator
e Data fusion



Connecting Madels and Observations

Untapped Potential: Snow Cover

w

Melting snow over Texas
GOES-16 CIRA Snow-
Cloud/Layers

http://rammb.cira.colostate.edu/ramsdis/online/loop_of_the_day/



...............................

Untapped Potential: Blowing Dust

High winds loft dust from > /
dry lake beds in Nevada ' ;
GOES-16 CIRA GeoColor

http://rammb.cira.colostate.edu/ramsdis/online/loop_of the day/
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Untapped Potential: Smoke Dispersion

Smoke ingested by
convection over Bolivia,
Brazil, and Paraguay
GOES-16 CIRA GeoColor

http://rammb.cira.colostate.edu/ramsdis/online/loop_of_the_day/



@IRA

Untapped Potential: Fire Temperature

Explosive growth of the ) \
Kincaid Fire "
GOES-17 Fire

Temperature RGB

2018/10/27 Q4:01:19 UTC

http://rammb.cira.colostate.edu/ramsdis/online/loop_of_the_day/



Connecting Models and Observations

Unmet Need: Latent Heating for Convective-

Scale Forecasting

 Data assimilation
e Radiance assimilation
* Machine learning

* Machine learning
* Convolutional neural networks

* Experiments: channel withholding,
1x1 filters, synthetic inputs

e Attribution methods: LRP

* Poster 27: Using Machine
Learning to Assimilate
Precipitating Pixel Information
from GOES ABl and GLM

- -
0 5 10 15 20 25 30 35 40 45 50 55 60 RMSD=6.2, RSQ=0.72, MAX=55

Composite Reflectivity (dBZ) CS135=0.36, POD35=0.55, FAR35=0.48

T —

Conclusions
1) Information content in image gradients
2) Data fusion of lightning and radiances




@IRA
Discussion Questions

* To users: do you see potential benefits from assimilation of GOES-R
Series snow cover, blowing dust, smoke dispersion, or fire
temperature?

* And what data assimilation strategies would be needed to include such
observations in your models?



Improving rapidly-developing storm prediction by
assimilating high-resolution GOES-16 ABI Infrared water
vapor and cloud sensitive radiances:

Issues and challenges

Xuguang Wang, Aaron Johnson

Krishna Chandramouli

Multiscale data Assimilation and Predictability (MAP) Iaboratory‘
School of Meteorology, University of Oklahoma

Collaborators:

Jason Otkin (CIMSS, U. Wisconsin)
Thomas Jones (CIMMS, U. Oklahoma)
Jefferey S. Whitaker (NOAA/ESRL/PSD)
Yanqiu Zhu (NCEP/EMC)

24 Feb. 2020
JPSS GOES PGRR summit, College Park, MA L



% Background and motivation

«  Direct radar reflectivity
assimilation has shown
good results for already-
initiated storms (e.q.,
Dowell et al. 2011; Johnson
et al. 2015; Wang and
Wang 2017).

«  High resolution ABI
obsrvations can be
complementary to radar
observations and if
assimilated can add lead
time to NWP of rapidly
developing storms (e.g.,
Cintineo et al. 2016).

1800 UT'

May 18 2017 2



Challenges of assimilating GOES-16 clear air and
cloudy radiances in convection allowing models

U

 Issues of numerical models
 Bias (model and obs.) correction

J Observation error estimation (operator error,
representativeness error, etc.)

 Effective assimilation of multiple channels
d QC during DA

 Data assimilation algorithm advancement to treat nonlinearity
and multiscale



% Research and Development made so far

d We have implemented ABI clear air and cloudy
radiance assimilation in GSI-EnKF with various
methods to enhance the assimilation.

additive noise Iinflation to treat model issue
adaptive obs. error estimation

understanding impact of assimilating different ABI
channels (channel 9 vs. channel 10)

comparing different bias correction
predictors/methods.

YV VVYV



Bias correction predictor

GOES-16 products used

TasLe 4. List of GOES-R ABI-derived baseline products. Also included are other attributes, such as the
geographical coverage, horizontal resolution, and product refresh rate.

Baseline product

Product geographic

Product horizon-

Refresh rate/coverage

coverage tal resolution time (mode 3)
- . . CONUS CONUS: |5 min
fﬁo";ﬂ:;:f:;t';‘" Al FD 2 km FD: 15 min
Mesoscale Mesoscale: 15 min
Aerosol optical depth CONUS 2 km CC"NUS:.S min
Taste |. ABI FMI spectral attributes [band , center gth, 50% full width at half maximu , : ; FD FD: [5 min
(FWHM) minimum-FWHM maximum, approximate subpoint ground sampling distance, and name]. Voleanic ash: Detection and height ::%NUS 2 km ::%INIISUI;S””; -
. - min
ABI band Approx central FYVHM at 50% FWI:IM at50% Subgo'mt pixel Descriptive name Cloud and moisture imagery D 2 km, \]:flth ﬁm.ar day- ED: 15 min
wavelength (um) minimum (ygm) maximum (um) spacing Mesoscale time observations Mesoscale: 30 s
P —— .
1 047 045 0.49 [ Blue G d ontical depth CONUS: for optical depth > | CONUS: 2 km CONUS: [5 min
2 0.64 0.60 0.68 0.5 Red \Du optical dep FD: for optical depth > | FD: 4 km FD: 15 min
——— » -
3 0.864 0847 0.882 I Vegetation Cloud pareicle size distributi %’NUS - Eg'\l';-'s-,f‘ min
3 1373 1366 1380 3 Cirrus oud particle size distribution m : 15 min _
Mesoscale Mesoscale: 5 min
5 1.61 1.59 1.63 ! Snowlice CONUS COMNUS: 5§ min
6 2.24 2.22 2.27 2 Cloud particle size Cloud-top phase FD 2 km FD: 15 min
7 390 3.80 399 2 Shortwave window Mesoscale Mesoscale: 5 min
CONUS CONUS: 10 km COMNUS: 60 min
Upper-level wat ——
8 6.19 5.79 6.59 2 PPerr evel water Cloud-top @ FD FD: 10 km FD: 60 min
6.93 6.72 7.14 2 Midlevel water vapor N ::q:;;ijgle Mesoscale: 4 km :;JE;:E;[E;E Tn]i:
o T 7 - wernaere g Cloud-top pressure D 10 km ED: 60 min
— VAN Cloud-top t " FD 21k FD: I5 min
Il 8.44 823 8.66 2 Cloud-top phase oud-top temperature Mesoscale m Mesoscale: 5 min
12 9.6l 9.42 9.80 2 Ozone Hurricane intensity FD 2 km FD: 30 min
13 10.33 10,18 10.48 2 Clean longwave window Rainfall rate/quantitative precipita- FD 2 km FD: I5 min
14 1121 1082 11.60 2 Longwave window tion estimation (QPE)
- - CONUS CONUS: 30 min
15 12.29 11.83 12.75 2 Dirty longwave window I Legacy vertical moisture profile FD 10 km FD: 60 min
16 13.28 1299 13.56 2 co, Mesoscale Mesoscale: 5 min
H . CONUS COMNUS: 30 min
SChm/t et a/. (201 7) Lt:s:inl:: vertical temperature ) 10 km ED: 60 min
P Mesoscale Mesoscale: 5 min
Derived stability indices [convec- CONUS CONUS: 30 min
tive available potential energy FD FD: 60 min
. . N 10 km -
. (CAFE}, lifted index, K index, Mesoscale Mesoscale: 5 min
. . Parallax correction Showalter index, total totals]
ASSImIIatEd CONUS CONUS: 30 min
Total precipitable water FD 10 km FD: 60 min
Mesoscale Mesoscale: 5 min
CONUS CONUS: |15 min
Clear-sky masks FD 2 km FD: 15 min
Mesoscale: 5 min

Mesoscale

e ST

Schmit et al. (2017)s

Removal of partial cloudy pixels



Case QOverview

65.00 5
55.00 7
145.00
135.00
25.00
15.00
£ g
5.00
Observed maximum composite Observed maximum composite Observed maximum composite
reflectivity during 1800-2000 UTC reflectivity during 1800-1830 UTC reflectivity during 1830-1900 UTC

. Two long-track supercells were observed in southwestern OK and north-central TX.

. Interested in predicting storm scale details and individual convective cells.

. Cell 1 initiated first and had the longest track and a tornado.

. Cell 2 developed next, and also intensified quickly into a long-lived supercell.

. Cell 3 developed last, eventually weakening as it followed the path of cell 1 and ingested cooler air.

6




Additive Noise Inflation
Implementation

Radar and Ch. 10 DA: 1830 UTC cycle

w000 _— —
/M\PA/: 65.00
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15.00

5.00 ®

distance (km)

Ensemble mean background of reflectivity (shaded, potential
temperature (red contour), water vapor (green contour), and total
cloud (black contour).

Ensemble based DA cannot add cloud
or precipitation hydrometeors to
locations where all first guess
members predicted zero values of
these variables, even if they are
implied by the radiance observations.

Zero background error variance for
these variables prevents the southern
storm(s) (e.g. cell 2) from being
produced during ABI DA cycling

Analogous approach to radar
reflectivity DA, an additive noise
inflation approach is adopted where
observations indicate cloud but
background indicates clear air.



No AN

AN

Additive Noise Inflation Impact on
Channel 10 ABI DA

Verification of time-maximum (using output files every 5 minutes) composite reflectivity during
the 1830 to 1900 UTC period.

The implementation of AN allows all storms be well forecast in the 1830 UTC initialization.

The northern storms are able to be forecast with greater lead time. Southern storms captured
at 1830 init.

Further optimizations to the AN implementation is still ongoing.

1810 init. 1820 init. 1830 Init.

Observation

1830 to 1900
utcC

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 3
1830-1900 UTC Forecast time-maximum composite reflectivity




Cross Section Diagnostics on
Additive Noise Inflation (Ch10)

Cross sections of DA increment to potential temperature (shaded), water vapor (green
contour), and total cloud hydrometeor (black contour)

No Additive noise Additive noise

Al

0 10 20 30

10000 10000

8000 8000

6000 6000

height (m)

4000 4000

1820 UTC

~—
/"
2000 /\

2000

~

0

40 50 0 10 200 30 40 50 60 70 80
distance (km) distance (km)

- Additive noise allows the increments to produce deeper storms in
northern two cells.

« Additive noise allows DA to start spinning up the southern storm in the
1820 UTC cycle



Impact of adaptive obs. error
estimation

Observation
o
=
(@)
(O]
>
ol
3
= 1830 to 1900
) UTC

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

Ob error estimated from o0-b as a function of symmetric cloud
amount

The forecasts are generally improved by using adaptive ob error
estimation, especially in the southern storm.

10



Ch9 vs Ch10 ABI DA impact

Observation Radar & Ch. 9 Radar & Ch. 10

500 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

Forecast time-maximum composite reflectivity

Ch10 better captures cell 3 likely because Ch10 can see
the early stages of low-level cloud development more
clearly than Ch 9.

Ch9 better captures cell 1& 2 likely because of better spun-
up ensemble covariance structure

11




Q| Challenge of bias correction

Channel 9 BT Observatlon at times from 1710 to 1830 uTC

1T (k1]
L i L

L]

e,

Channel 9 BT analysis : Observed BT predictor at times from 1710 to 1830 UTC

a4

T

-N-LM-*

Thand

e

Channel 9 BT analysis :

Simulated BT predictor

0 UTC

e -
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’]l

ot Jise

1

at times from 1710 to 183
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T
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Ozone Data Assimilation at NCEP

Haixia Liu
Louis Kouvaris
Andrew Collard

IMSG@NOAA/NWS/NCEP/EMC



Why Ozone Data Assimilation?

* Ozone data assimilation provides a global 3D distribution of ozone.

* Ozone observations from satellite instruments are important to
constrain the ozone field in global model.

* Accurate knowledge of the ozone distribution has potential to
improve temperature forecasts in stratosphere.

* The time evolution of ozone contains wind information.

* Ozone analyses initialize ozone forecasts which are used for surface
UV forecasts.



O3 products used operationally at NCEP

Actively Assimilated

* OMPS version 8 nadir profiler
(NP) and nadir mapper (NM)
from NPP

e OMI_AURA (total column)

To be used in future

OMPS limb profiler (LP): under evaluation and can be monitored in the pre-
implementation parallels

OMPS NP and NM from N20

JPSS/GOES-R Proving Ground / Risk Reduction (PGRR) 3




total column O3 data coverage

GON
| OmF from OMPS nadir mapper
" cntavq,sdv= 5571, 3.10874, 7.09035
o T OO ZLE BALED ﬂ‘f,’::-"?:_"—‘v".' B LATL g =
NS ) £ N G

L, s . .
EQ{ =
605 g
e 60E 120E 180 120W 60W

-  OMPS nadir mapper has better

coverage than OMI_AURA.
W

JPSS/GOES-R Proving Ground / Ris

-2 =% -1 -1 R 10




Blue-OMPS LP FIed OMPS NP

gl H+a;+ S UK
Obs from OMPS nadir profiler VS FCST
o1 | T |

- . .
£l - ) :
L x @ -
OMPS profiler daily data coverage - g
1000.0 = | | o I I I I I I [

blue: limb profiler
red: nadir profiler

JPSS/GOES-R Proving Ground / Risk Reduction (PGRR) 5



OMPS NPP Assimilation

e Quality Controls (QC) for OMPS
* QC for nadir profiler (NP):
* Only accept total ozone error code 0 or 2 (high sza)

* Only accept profile ozone error code 0, 1 (high sza) or 7(stray light
correction applied)

e QC for total column ozone from nadir mapper (NM):
* only accept flags O, 1, flag 2 is high SZA data which is not used

* remove the data in which the C-pair algorithm (331 and 360 nm) is
used

® Thinning for OMPS NM:
®  the product resolution is 50kmx50km but thinned to 150kmx150km



Impact of OMPS_NPP Assimilation

a3 {(ppmg), 00Z—Cyec l0Sap2018—190ct2018 Maan
{anl anl anl =nl) Foat—Hour Averages

prompsoff

e —

Comparison with independent O3 sounding

760 Zonal Mean O3 Analysis

hYS 60 305 EQ 30N BON 90N
prompsond — prampaoff

10° F

pressure(log)

-oo] O3 Analysis Difference Indicating OMPS Impact.

Without OMPS

sond

ith OMPS data assimilated

Opportunities to improve vertical

distribution; hopefully OMPS LP can

fill in this gap.

ode
L
L

sonde o
sonde_g_ctl
sonde_g_exp |

uou 6O a0 EQ 20N BON GON

-0.5 -04 —0.3 —0=2 -0.1 —0.05 01 02 o4 08 0.8 1
JPSS/GOES-R Proving Ground / Risk Reduction (PGRR)
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Ozone Data Assimilation Monitoring

Select Source: | Operational GDAS v

Time Series plots
Horizontal data plots
Summary, plots

Time Series

Select Platform: NPP OMPSNP

Select Data Type: ges v

Geographic Region: | global

Statistic Type:
Number of observations
Contribution to penalty
Observed-Guess

Level Groups: 58

v

Display

A\

Ozone Data Monitoring

Net,run : GFS, gdas

platform: ompsnp_npp

region : global (780W—180E, 90S—90N)
variable: obs—ges

valid : 1222 0.0030
+10.0744
+\+ 0.0558
F0.0372
F0.0186
0.1036

pressure 0.6839
level 5
avg: 0.0464849

sdv: 0.0506995 -4 0.0691

- 0.0345
wa |S NOT ww | 0.0000 - .
! === dramatic changes in

26DEC 1JAN 6JAN 11JAN 16JAN 21JAN
v | o. . .
Y R R L fens these time series

pressure 1.013 Yl A A RN AL AN AN 0.0476
level 6 sl R A e s 0.0238

ST A PR SRS T S Sy PSP i indicate changes in

f
+ A4 L —0.1821

o
B ity of ozone dat
Lo “025% quality or oZzone adta
26DEC 1JAN BJAN 11JAN 16JAN 21JAN
¥ 0.2553
A kL rto.2042
FTRTNEI . 4 e oy e e, 7 S 0 1532
pressure 1.601 [, Tt o 4 RO SR B IR ALF T F o 0.1021
level 7 £ Bl L TR ala Al 0.0511
avg: 0.0212994 + P o W + i as4 01197
sdv: 0.114989 -:td-‘-h..‘ﬂ.é-*—fh:*;_-—wi.ﬁ 4‘,‘4‘-\_—“:"?1_++4+"¥... B Y “4?*3’“*1"’70.0030
- =0.1197
—0.2393
i o -0.3590
26DEC 1JAN BJAN 11JAN 16JAN 21JAN

JPSS/GOES-R Proving Ground / Risk Reduction (PGRR) 8



Challenges and Questions

Lack independent ozone sounding data for validation.

Recent development of CRTM on direct simulation of the UV
radiances. Any work done on direct UV radiance assimilation?

Further improvement on ozone analysis: finer horizontal and
vertical structures. What are the potential benefits in users’

applications?
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