Wildfire smoke forecasts using HYSPLIT-based emission inverse modeling system and GOES observations

Tianfeng Chai1,2, Hyun Cheol Kim1,2, Ariel Stein1, and Shobha Kondragunta3

1. NOAA Air Resources Laboratory, College Park, MD;
2. Cooperative Institute for Satellite Earth System Studies (CISESS), University of Maryland, College Park, Maryland;
3. National Environmental Satellite, Data, and Information Service, National Oceanic and Atmospheric Administration, College Park, Maryland

Motivation

Wildfire smoke forecasts have been challenged by high uncertainty in fire emission estimates, such as the BlueSky emission used in the current NOAA smoke forecasts (Fig. 1). We develop an inverse modeling system, the HYSPLIT-based Emissions Inverse Modeling System for wildfires (or HEIMS-fire) to estimate wildfire emissions from the smoke plumes measured by satellite observations.

Methodology

In this top-down approach, the unknown emission terms are obtained by searching the emissions that would produce the best model predictions closely matching the observations. The wildfire emission locations are identified by HMS, the unknown emission rates and the release heights are left to be determined. The emission rates may vary significantly with time. Thus, the unknowns of the inverse problem are the emission rates q_{ikt} at each location i, at different height k and period t. The cost function F is defined as,

$$F = \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{k_{max}} \sum_{t=1}^{t_{max}} \left(q_{ikt} - q_{ikt}^n \right)^2 \sigma_{ikt}^2 + \frac{1}{2} \sum_{i=1}^{N} \sum_{n=1}^{N_{max}} \left(\epsilon_{ikt} - \epsilon_{ikt}^n \right)^2 \sigma_{ikt}^2 + \mathcal{F}_{other},$$

where q_{ikt}^n is the m-th observed concentration or mass loading at time period t and c_{ikt}^n is the HYSPLIT counterpart. As shown in Equation (1), a background term is included to measure the deviation of the emission estimation from its first guess q_{ikt}^n. The background terms ensures that the problem is well-posed even when there are not enough observations available in certain circumstances. The background error variances σ_{ikt}^2 and the observational error variances ϵ_{ikt}^2 represent the uncertainties from both the model and observations, as well as the representational errors. F_{other} refers to the other regularization terms that can be included in the cost function. The optimization problem can be solved using many minimization tools, such as L-BFGS-B package, to get the final optimal emission estimates.

HEIMS-fire system

The HEIMS-fire system is shown in Fig. 2. The extensive fires in the southeastern U.S. region in November 2016 is studied here. (Fig.3).

Reconstructed smoke results

As smoke may come from distant sources, four domains of fire source inputs are considered (Fig.4). Sensitivity tests show that only including the domain 1 would generate comparable results. Using the HEIMS estimated emissions, the smoke plume predicted match the observation pretty well (Fig.5).

Reconstructed smoke results

As smoke may come from distant sources, four domains of fire source inputs are considered (Fig.4). Sensitivity tests show that only including the domain 1 would generate comparable results. Using the HEIMS estimated emissions, the smoke plume predicted match the observation pretty well (Fig.5).

Figure 1. Current NOAA HYSPLIT wildfire smoke forecast system and comparison between HYSPLIT smoke forecasts (blue) and NESDIS HMS smoke (orange).

Summary and future work

Wildfire emission inversion system HEIMS-fire has been built based on HYSPLIT model, its TCM, and a cost function; A case study using real GOES data has been performed; High resolution GOES-16/17 data will be tested; More evaluation will be performed using VIIRS AOD and surface PM2.5 observations; Estimated emissions will be tested in other models, such as CMAQ and HRRR-smoke.

Contact information: Tianfeng.Chai@noaa.gov