
Dense Optical Flow Applications for Operational Users
Jason Apke1 , Matthew Rogers1, Steven Miller1

1Cooperative Institute for Research in the Atmosphere, Fort Collins, CO
2020 JPSS/GOES-R Proving Ground/Risk Reduction Summit 

College Park, MD | P. 24

Acknowledgements: This CIRA team was funded by the GOES-R Program Office, NESDIS GOES-R Program Office award number: NA14OAR4320125.  Special thanks to Kristopher Bedka at the NASA Langley Research Center for providing the wind-
profiling Lidar data, and to Yoo-Jeong Noh for providing the ACHA cloud-top height data.
Citations
Apke, J. M., K. A. Hilburn, S. D. Miller, and D. A. Peterson, 2020: Towards objective identification and tracking of convective outflow boundaries in next-generation geostationary satellite imagery. MURI Spec. Ed. Issue Atmos. Meas. Tech., 
Submitted.
Daniels, J. M., W. C. Bresky, S. T. Wanzong, C. S. Velden, and H. Berger, 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Derived Motion Winds. 1–60 pp. https://www.goes-r.gov/products/baseline-derived-
motion-winds.html.
Daniels, J., W. Bresky, A. Bailey, A. Allegrino, S. Wanzong and C. Velden, 2018: Introducing Atmospheric Motion Vectors Derived from the GOES-16 Advanced-Baseline Imager.  14th Annual Symposium on New Generation Operational 
Environmental Satellites, Austin, TX, Amer. Meteor. Soc.
Farnebäck, G., 2001: Two-Frame Motion Estimation Based on Polynomial Expansion. Proceedings: Eighth IEEE International Conference on Computer Vision, Vol. 1 of, 171–177.
Fortun, D., P. Bouthemy, C. Kervrann, D. Fortun, P. Bouthemy, and C. Kervrann, 2015: Optical flow modeling and computation : a survey To cite this version : Optical flow modeling and computation : a survey. Comput. Vis. Image Underst., 134, 1–
21. https://hal.inria.fr/hal-01104081/file/CVIU_survey.pdf.
Horn, B. K. P., and B. G. Schunck, 1981: Determining optical flow. Artif. Intell., 17, 185–203, doi:10.1016/0004-3702(81)90024-2.
Sun, D., S. Roth, and M. J. Black, 2014: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis., 106, 115–137, doi:10.1007/s11263-013-0644-x.
Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations. Bull. Am. Meteorol. Soc., 78, 173–195.

Figure 3. GOES-16 5-min CONUS
Sector CIRA GeoColor product over
Hurricane Dorian at a) 1300 UTC
and b) 1305 UTC shown with c) the
1302 UTC meso-sector and d) the
interpolated GeoColor derived
using the Farnebäck (2001) DOF
system. Red Arrows highlight the
differences between the
interpolated product in d) and the
actual product in c).

➢ “Optical Flow” (OF) is the distribution of apparent velocities of movement of
brightness patterns in an image (Horn and Schunk 1981)

➢ Deriving OF is a fundamental task in geostationary satellite image analysis
1. OF can be used to track features through time sequences
2. Tracking cloud-drift motion is used to produce operational Atmospheric

Motion Vectors (AMVs; Velden et al. 1997; Daniels et al. 2010)
3. Motion of features can also be used for decision making tools, such as

diagnosis of tropical cyclone intensity, derivation of local vertical wind
shear, snow vs. cloud identification, or determining observed deep
convection severity (Apke et al. 2020)

4. Using simultaneous scans from a satellite pair, OF serves as a pixel
matching method to identify feature altitude (Stereoscopy)

➢ As satellite imagery improves (in temporal, spatial, spectral, and radiometric
resolution), so to does our ability to resolve motion in image pairs

➢ The goal of this work is to bring cutting edge OF techniques and their benefits
to GOES-R series satellite research and operations

Introduction

➢ The computer vision community has mitigated or resolved issues associated
with the PM techniques to retrieve “Dense” OF fields, where motion is
derived at every image pixel (e.g. Fortun et al. 2015)

➢ Many DOF derivation methods are based on solving large systems of linear
equations set up by assuming a few things about DOF behavior:

1. The displacements are small
2. The brightness (or brightness gradient) only changes due to motion
3. The flow can be regularized (translation or deformation varies slowly)

➢ The temporal resolution of the Advanced Baseline Imager (ABI) improves the
assumptions above and enables the derivation of DOF on satellite imagery!

➢ At CIRA, we have developed a system of ABI-product leveraging DOF schemes,
and are experimenting with applications for satellite remote sensing

➢ In this poster, we show products that are possible using techniques by Sun et
al. (2014) and Farnebäck (2001) to derive DOF modified by ABI channels

Dense Optical Flow Methods

Mesoscale Winds
➢ Combining DOF with cloud-top height products enables AMV-like wind

estimation with feature resolution of ~10 km wavelengths (meso-scale)
➢ Real-time tests show how mesoscale winds can highlight flows relevant to

operations (e.g. accelerating horizontal flows with vertical cloud growth Fig. 2)
➢ Preliminary validation using wind profiling Lidar samples suggest GOES-R DOF

derivation approaches are performing on-par with AMVs (Table 1)

➢ Successful DOF derivation, now possible with GOES-R series ABI imagery, leads
to a myriad of new products for operational and research users

➢ Winds and interpolation highlight flows important for meteorology operations
➢ Image Warping enables computation of pixel-level time rates of change for

moving fields, such as cloud-top cooling rates of moving convection
➢ DOF methods are constantly evolving, and research is underway to evaluate

cutting edge approaches, and determine how these new approaches will aid in
ongoing product development

Conclusions and Future Work

Image Warping
➢ Knowing DOF allows research and operational meteorologists to create

“warped” images, where brightness (e.g. Fig. 4a) at some previous (or future)
time is adjusted in the grid to correct for its motion from the current time

➢ Without correcting for cloud motion, cloud-top cooling of moving convection
sampled in the 10.3-μm infrared band cannot be resolved (Fig. 4b)

➢ Warping is essential for operational users and decision-making tools that
need time-rates of change for moving fields (e.g. convection initiation cloud-
top cooling detected at black arrows in Fig. 4c)

Other Possible Products
➢ Several new DOF based products are currently under development, including:

1. Stereoscopy (cloud-top and feature altitude from multiple satellites)
2. Feature forward extrapolation
3. Motion/CIRA product blending
4. Deep convection cloud-top divergence and vorticity from winds

Image Temporal Interpolation
➢ Brightness motion estimates enable temporal interpolation of products

between scanned image frames (e.g. 1-min meso-sectors on demand!)
➢ Interpolated GeoColor products highlight important mesoscale motions and

are close to true meso-sector imagery (Fig. 3)
➢ Interpolation struggles in areas with fast motion and deep convection

Current Optical Flow Techniques
➢ Most AMV and stereoscopy algorithms use Patch Matching (PM), where targets

(e.g. 5x5 pixel boxes) are iteratively compared to candidate targets within a
search region in the next image (Fig. 1, Left)

➢ Tracked features are quality controlled to ensure PM is an efficient and effective
OF method

➢ Quality control removes targets where the sum-of-square-error minimization
and cross-correlation maximization to find matching candidates fails

➢ Advantages: Computationally efficient, simple to understand, simple to
implement, handles large displacements

➢ Disadvantages: Natural scenes contain motion types which cannot be resolved
with PM techniques (Fig. 1, Right), PM only returns motion for a subset of the
image pixels (e.g. a Sparse OF system), can be susceptible to noise

Figure 2. (Top) The 13 Jan 2020 GOES-16 a) 0.64-μm
visible imagery, b) Sun et al. (2014) dense optical
flow (where grey is stationary), c) GOES-R ABI Cloud-
Height Algorithm cloud-top heights, and d) color
scales used for b) and c), shown with the 18 UTC
analysis Global Forecast System vertical wind profile
for the region.
Table 1. (Right) Validation (Bias/Mean-Vector
Difference; MVD) for DOF winds compared to wind-
profiling Lidar data, shown with AMV statistics.
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Figure 1. (Left) Schematic
of the PM Optical Flow
scheme, and (Right) the
types of cloud evolution
where PM fails.

Algorithm Bias (m s-1)* MVD (m s-1)*

Modified-Sun et al. (2014) (IR Ch-7) -0.798 3.101

Farnebäck (2001) (visible imagery) -0.114 2.272

GOES-R AMVs (IR Ch-7) from 
Daniels et al. (2018)**

< |-0.5| ~2.9-4.5

GOES-R AMVs (Visible Ch-2) from 
Daniels et al. (2018)**

< |0.5| ~2.8-3.7
Figure 4. The 10 Jan 2020 GOES-16 column a) 10.3-μm infrared imagery, column b) the 10.3-μm brightness
temperature cooling over 5-min without warping for motion, and column c) the 10.3-μm brightness temperature
cooling using warping provided by the Farnebäck (2001) DOF algorithm. The black arrows highlight locations of deep
convection initiation, and the red circle highlights benign cumulus which produces large cooling magnitudes without
correcting for motion.

**DOF derived on 23 April 2019 from the GOES-17 meso-sector domain (0055 UTC-0300 UTC) over the pacific coast
of the United States, AMV validation statistics come from a larger sample of comparisons to rawinsondes

https://www.goes-r.gov/products/baseline-derived-motion-winds.html

