Increased lightning in tropical cyclones (TCs) is typically associated with intensification (e.g. Molinari et al. 1999; Stevenson et al. 2014), but significant lightning outbreaks are also observed in weakening storms (Du et al. 2017). The total number of lightning flashes in a TC is not always a reliable indicator of TC intensity evolution.

- Issues with the range and detection efficiency of ground-based networks, particularly for intracal lightning.
- Physical processes such as vertical wind shear can intensify asymmetric convection while also weakening the TC.
- The commissioning of the Geostationary Lightning Mapper (GLM) aboard GOES-16 and GOES-17 marked, for the first time, the presence of an operational lightning detector in geostationary orbit.

In addition to flash density (the number of flashes per unit area per unit time), GLM also provides continuous observations of flash area and total optical energy.

Characterize three aspects of the evolution of Hurricane Dorian (2019) using GLM:
1. Hurricane Dorian’s rapid intensification leading up to its peak intensity.
2. Hurricane Dorian’s weakening as it approached the Bahamas.
3. The diurnal cycle of Hurricane Dorian.

The periods that will be analyzed here include:
- Total optical energy distribution
- Diurnal cycle of Hurricane Dorian


Objectives

- Little distinction between joint distributions for the larger domain (top row) and inner-core domain (bottom row).
- No discernible difference in total optical energy or average flash area between inner core and outer radii.
- 18,140 of the 21,351 flashes (85%) occurred within the smaller domain.
- A large percentage of flashes within the storm were in the inner core.

Summary

1. Hurricane Dorian’s inner core during rapid intensification was characterized by smaller flash density but larger average flash area and larger total optical energy.
2. Hurricane Dorian’s inner core during rapid weakening had many more flashes but of smaller average flash area and smaller total optical energy.
3. Outward propagating regions of lightning flashes in Hurricane Dorian are consistent with the tropical cyclone diurnal pulse (Dunin et al. 2014; Ditch et al. 2019).

Future Work

1. Characterize GLM flash area and flash energy during intensification and weakening in a large number of TCs.
2. Investigate the relationship between eyewall mesovortices and lightning, and the potential to use flash area and flash energy statistics to anticipate TC intensity change or diurnal cycles.
3. Analyze how flash area and flash energy change across the TC diurnal pulse.

Acknowledgments

Use GLM Flash Density, Flash Area, and Flash Energy to Diagnose Tropical Cyclone Structure and Intensification

Patrick Duran1,2, Christopher J. Schultz1,2,3, Roger Allen2,3, Eric Bruning4, Stephanie N. Stevenson5, and David Pequeen4

1NASA Marshall Space Flight Center; 2NASA Short-Term Prediction Research and Transition Center; 3Jacobs Space Exploration Group; 4Texas Tech University; 5NOAA NWS National Hurricane Center

GOES-16 - Hurricane Dorian Flash Density

Hurricane Dorian exhibited a classic “diurnal pulse” of cold cloud tops (Dunin et al. 2014). On both 30 and 31 August, a wave-like pulse propagated outward from the inner core, with cooling infrared brightness temperatures on the leading edge and warming infrared brightness temperatures behind (Fig. 5).

Diurnal pulses in IR brightness temperature corresponded to outward propagating regions of lightning observed by GLM (Fig. 6).

A large percentage of flashes within the storm were in the inner core. More flashes in both inner core and outer radii than during rapid intensification. The commissioning of the Geostationary Lightning Mapper (GLM) aboard GOES-16 and GOES-17 marked, for the first time, the presence of an operational lightning detector in geostationary orbit.

Fig. 1. GOES-16 GLM flash counts in 30-minute time periods (left axis) within 100, 200, and 300 km of Hurricane Dorian’s (2019) storm center. The black line indicates the maximum wind speed (kt; right axis). The four time periods analyzed here are denoted by the blue boxes DC1, DC2 and the red boxes RI and RW, described above.

Fig. 2. Joint distributions of average flash area with total optical energy and flash extent density over a large (top row) 500-km square domain and (bottom row) smaller 200-km × 400-km domain centered on Hurricane Dorian during the first 18 hours of the period denoted “RI” in Fig. 1. Red bottom line denotes the squared GLM group-to-flash clustering distance (16.5 km²) and top red lines at 1000 km² are included for reference.

16 GLM flash counts in 30 min time periods

- Flash area and flash energy during Dorian’s rapid weakening

Fig. 3. As in Fig. 2, but for the first 18 hours of the period denoted “RW” in Fig. 1.

Fig. 4. GOES-16 ABI Channel 13 visible imagery of Hurricane Dorian with GLM flash locations (red marks) aggregated over two-minute periods centered on the time of the ABI image. Orange arrows denote the location of a mesovortex orbiting near the eye-wall interface.

Fig. 5. GOES-16 ABI Channel 13 brightness temperature differences computed over a six-hour period. Red shading denotes warming temperatures over the 6-hour period and blue shading indicates cooling temperatures.

Fig. 6. Radius-time diagrams of GOES-16 GLM flash counts summed over 10-minute intervals in Hurricane Dorian for the periods indicated by “DC1” and “DC2” in Fig. 1. Black arrows denote an outward propagating region of lightning.

Using GLM Flash Density, Flash Area, and Flash Energy to Diagnose Tropical Cyclone Structure and Intensification

This work was supported by NASA's Marshall Space Flight Center, the National Oceanic and Atmospheric Administration’s Joint Typhoon Warning Center, the National Science Foundation, and the Atmospheric Research Measurement Program (ARM) User Facility, funded by a grant to the ARM User Facility from the National Science Foundation (NSF). Additional support was provided by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Program Office’s (CPO) Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the Energy Biosciences Institute (EBI) at the University of California.

References