
Probabilistic Precipitation Estimates from GOES-R for Hydrological Applications
Shruti Upadhyaya1, Pierre-Emmanuel Kirstetter2,3,4,5 , Jonathan Gourley5

1 Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma; 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma 
3 School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma; 4 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma 

5 NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Email: shruti.a.upadhyaya-1@ou.edu, pierre.kirstetter@noaa.gov, bob.kuligowski@noaa.gov, jj.gourley@noaa.gov

1. Introduction

Goal: To derive unified, consistent, accurate and fine-resolution precipitation rates over the Conterminous U.S., by leveraging GOES-R satellite observations and ground-radar based precipitation product from the Multi-Radar/Multi-Sensor (MRMS) system.
Specific Objective: To investigate the potential for improving precipitation estimation using multi-spectral data from the GOES-R satellite w.r.t. deterministic retrieval algorithms such as SCaMPR (Kuligowski et al. 2016).
Advanced Baseline Imager (ABI) on GOES-R satellite: Views Earth with three times more spectral channels (16) , four times the resolution (~ 2km), and five times faster scanning (5min across Conterminous U.S.) compared to its predecessor IMAGER on GOES 12-15. 
Challenge: To effectively mine GOES-R “big data” observations for precipitation and document relations between multi-spectral ABI observations and MRMS surface precipitation estimates. `

2. Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) : NOAA’s Operational Precipitation Algorithm for GOES-R satellite (Kuligowski et al. 2016)

I. SCaMPR Predictors derived from GOES-R
*T6.19 (WV) T8.5-T7.34 (IR-WV)

S=0.568-(Tmin,11.2) (Texture) T11.2-T7.34 (IR-WV)
Tavg,11.2-Tmin,11.2-S (Texture) T8.5-T11.2 (IR-IR)

T7.34-T6.19 (WV-WV) T11.2-T12.3 (IR-IR)
IR: Infrared spectral band                WV: Water Vapor absorption band

*T6.19: Brightness temperature observed in the ABI band at wavelength 6.19μm
Tavg,11.2:  Average value of T11.2 across 5x5 pixel 
Tmin,11.2:  Minimum T11.2 over the closest six neighboring pixels

Cloud Type Classification
(Deterministic)

Rain/No-Rain Detection 
(Deterministic)

Precipitation Quantification 
(Deterministic)

Post Processing

Using Discriminant Analysis

Using Multiple Linear Regression

E.g. Bias Correction, Relative Humidity 
Correction

Type 1 (Ice Cloud): T7.34<T11.2 and T8.5-T11.2<-0.3
Type 2 (Water Cloud): T7.34<T11.2 and T8.5-T11.2≥-0.3
Type 3 (cold-top convective cloud): T7.34≥T11.2
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III. Study Area and Dataset
• Reference data: 
- SCaMPR: CPC combined microwave (MWCOMB) dataset (Joyce et al. 2004) derived from satellite passive 

microwave sensors at 30min and 8km resolution
- Proposed: Multi-Radar/Multi-Sensor (MRMS) precipitation product at native ABI resolution

• Study Period: Summer 2018 
• Study Area: Conterminous United States (CONUS)

3. Challenges at different stages of SCaMPR
I. Classification

PDFc: Probability distribution by occurrence
PDFv: Probability distribution by volume

PDFc

PDFv

Type 1

Type 2

Type 3

Bi-modal: Type 1 (PDFv)

Challenge:
• Bi-modal distribution suggests two different cloud populations in the Type 1 class of 

SCaMPR
• SCaMPR deterministic detection of precipitation and choice of channels questioned by 

Probability of Precipitation
Proposed Solution:  Explore more indices such as all possible difference and textures along 
with better reference to aid the classification (Section 4-II)

III. Quantification

Mean QuantilesLinear model
(SCaMPR)
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Challenge:
Precipitation retrieval requires more than just one 
deterministic “best estimate” and linear relation
Proposed Solution:
Probabilistic Quantitative Precipitation Estimation 
(PQPE)(Kirstetter et al. 2018) (Section 4-III)

Proportion of Hail from MRMS in 
30min window of MWCOMB

MWCOMB Mean MRMS  
Date: 2018-07-22 04:00:00 UTC

• To explore the potential of high resolution, low latency, and more spectral bands from ABI, a 
reference better than MWCOMB is required;

• High resolution, more physically based precipitation rates and types retrieved from MRMS 
are ideal to effectively mine data from GOES-R for precipitation retrieval

5. Conclusions and Perspectives 
• Challenge: the potential of high-resolution ABI data remains underutilized due to consideration of coarser scale data as 

reference è solution: to address this issue, we are utilizing high resolution and accurate precipitation estimates from 
MRMS.

• Challenge: satellite precipitation has been deterministically computed despite the under-constrained relation between 
the satellite sensor measurements to precipitation rate. è solution: preliminary results on new satellite precipitation 
approaches which focuses on probabilistic quantification of precipitation (Kirstetter et al. 2018) show promising results 
with unbiased estimates.

• Challenge: Effective utilization of high resolution (Spatial, Temporal and Spectral) GOES-R observations è solution: results 
confirm the usefulness of GOES-R infrared and water vapor absorption bands, as well as newly derived indices for 
precipitation detection, classification and quantification.

• Challenge: simple unsupervised techniques are currently being used for precipitation classification è solution: The 
detection and classification results using ML approach guided by better reference highlights the potential of GOES-R 
satellite observations in identifying precipitation types from  ground radar i.e. MRMS system  
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T6.19-T7.34
(WV-WV)

T8.5-T11.2
(IR-IR)

T7.34 – T8.5
(WV-IR)

Example: Texture from ABI Spectral channel 11.2𝜇m 
distribution across different MRMS precipitation types

4. Proposed Algorithm: Preliminary Results

I. Better Reference II. Detection and Classification

Precipitation Type Probability of 
Detection

No-Precipitation 96%
Hail 94%

Convective 69%
Tropical 

Convective/Mix 83%

Warm Stratiform 50%
Cool Stratiform 91%

Tropical Stratiform Mix 70%
Snow 87%

Overall Accuracy: 80%

• More channel combination and textures are derived: total 480 indices ;
• A Random Forest based Machine Learning (ML) algorithm is developed

III. Quantification: Probabilistic Quantitative Precipitation Estimation (PQPE)

Probability of exceeding 5 mm/h

PQPE Example from Kirstetter et al., 2018

Statistics MWCOMB SCaMPR PQPE(GOES-R)
Correlation 
Coefficient 0.41 0.32 0.49

Root Mean Square 
Error (mm/h) 5.63 4.95 4.1

Bias (mm/h) +1.10 -0.78 +0.12
Mean Relative Error 

(%)
+41.5

(Overestimation)
-28.8

(Underestimation)
+3.6

(Unbiased)

Initial Quantification Results with PQPE and its comparison with MWCOMB and SCaMPR

Initial Classification and Detection results

II. Detection


