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1. Introduction
Goal: To derive unified, consistent, accurate and fine-resolution precipitation rates over the Conterminous U.S., by leveraging GOES-R satellite observations and ground-radar based precipitation product from the Multi-Radar/Multi-Sensor (MRMS) system.
Specific Objective: To investigate the potential for improving precipitation estimation using multi-spectral data from the GOES-R satellite w.r.t. deterministic retrieval algorithms such as SCaMPR (Kuligowski et al. 2016).
Advanced Baseline Imager (ABI) on GOES-R satellite: Views Earth with three times more spectral channels (16) , four times the resolution (~ 2km), and five times faster scanning (5min across Conterminous U.S.) compared to its predecessor IMAGER on GOES 12-15.
Challenge: To effectively mine GOES-R “big data” observations for precipitation and document relations between multi-spectral ABI observations and MRMS surface precipitation estimates.
2. Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) : NOAA’s Operational Precipitation Algorithm for GOES-R satellite (Kuligowski et al. 2016)
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3. Challenges at different stages of SCaMPR 4. Proposed Algorithm: Preliminary Results
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5. Conclusions and Perspectives [ lll. Quantification: Probabilistic Quantitative Precipitation Estimation (PQPE) ]
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