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Introduction S-HIS: Current Capability and Existing Measurements
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robustness and reliability over 20-years of operation on 35 missions around the globe, and has earned 'magmg accomplished via cross-track scanning. Since 1998, the S‘H.|S has participated in 35 field . Periodic end-to-end radiance evaluations under flight like conditions with NIST transfer sensors.
recognition as an infrared calibration reference standard for satellite calibration validation. campaigns on the NASA ER-2, DC-8, Pro.teus., WB—S?, a”fj Global Hawk alrborng platforms. The S-HIShas . |nstrument calibration during flight using two on-board calibration blackbodies
proven to be extremely dependable with high calibration accuracy and consistent performance on all
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Furthermore, the UW-SSEC is conducting a study to (1) define what is required to maintain the current I 1 = °'25L m ] 20150514 |
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capability of the S-HIS into the future, (2) identify enhanced capabilities enabled by new technologies 5 oot (T | ——20170829 |\
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Enhancement of the S-HIS capabilities can be enabled by upgrading the instrument with new 5 't e
. . . 'I:_D_ Rk (1] = ok 2
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- An independent On-board Absolute Radiance Standard. This technology has been developed for Thowo Tom e oo 2000 Z00 200 2000 RIS S | I
the UW-SSEC Absolute Radiance Interferometer and an airborne version for the S-HIS would allow Data acquired for external blackbody o I O N M M A U T
for traceability to absolute references via end-to-end calibration verification in-flight, as well as temperatures of ambient, 318K, 333K, and Ice e
improved detector nonlinearity characterization and correction, and reduced radiometric Bath Blackbody ' ' ' AERI BT (K)
uncertainty. Atmospheric emission/absorption not included
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- Improved spatial resolution via the integration of a detector array and conversion of the instrument in predicted BT (i.e. no LBLRTM) 02l TXR10 p Channel [ AERIminus TXR |
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- Enhanced on-board processing to facilitate the imaging FTS and sub-pixel imager capabilities. g £ J
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for airborne | processed using a real-time ground data processing system that is capable of delivering i .254 : i mﬂ ————— ow spatial variabilty within these A FOVs (451 boresiahted IR imager
applica tion ' atmos pherlc prOﬁ les, radiance data, and engineering status to mission support w W o oW BN W E, GOES ABI data can be used to assess temporal stability between IASI and S-HIS time of
= scientists via a web browser in less than one minute from the time of observation. Example comparison of Cloud Physics Lidar (CPL) mean cloud top compared to observation for these FOVs

S-HIS Dual Regression Retrieved Cloud Top Height product (2013-08-28 flight)
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