

Kenneth Pickering¹, Dale Allen¹, Lok Lamsal², Scott Janz³, Matthew Kowalewski², Mason Quick⁴, Richard Blakeslee⁵, William Koshak⁵, Jeff Lapierre⁶ ¹University of Maryland, ²USRA/GESTAR, ³NASA Goddard Space Flight Center, ⁴University of Alabama Huntsville, ⁵NASA Marshall Space Flight Center, ⁶Earth Networks

Introduction

• Lightning produces NO because the extreme temperatures in lightning channels dissociate O₂ and N₂, which then combine to form NO, which quickly reacts with O_3 to form NO₂.

On average, each lightning flash produces 100 to 400 moles of NO_x or 2 – 8 Tg N yr⁻¹ [Schumann and Huntrieser, 2007] for a global flash rate of ~45 flashes s-¹. Much of the uncertainty stems from limited knowledge of NO_x production per flash (LNOx PE) or per unit flash length.

• Most LNO, is injected into middle and upper troposphere where away from deep convection it is relatively long-lived and enhances the concentrations of upper tropospheric NO₄, OH, and O₃ and contributes to positive radiative forcing by O₃ and negative forcing by CH_{4} .

In this study, we estimate LNO, PE using columns of NO, retrieved by the Geo-CAPE Airborne Simulator on board the NASA ER-2 aircraft during the GOES-R Validation Campaign during Spring 2017 and flash rates from the Geostationary Lightning Mapper (GLM), the Earth Networks Total Lightning Network (ENTLN), and the NASA Marshall Fly's Eye GLM Simulator (FEGS)

GOES-R Validation Campaign

The GOES-R Validation Campaign was conducted during March – May 2017 using the NASA ER-2 (Fig. 1) aircraft based at Palmdale, CA and Warner-Robins, GA. Its primary purpose was validation of the Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) satellite instruments aboard GOES-R. The NASA Goddard Geo-CAPE Airborne Simulator (GCAS) UV/Vis spectrometer piggybacked on the aircraft mission to allow observations of NO₂ simultaneously with lightning detection by the NASA Marshall Fly's Eye GLM Simulator (FEGS).

 Table 1. Daytime GOES-R Campaign Flights with GCAS Data
and Cloud Physics Lidar (CPL) Cloud Heights

Date	Location	Start Time (UT)	End Time (LIT)
Date	LUCALIUII	Juli Inne (UI)	

Geostationary Lightning Mapper (GLM) aboard GOES-16, a geostationary satellite launched on 19 Nov 2016, maps the distribution of lightning flashes at ~10 km spatial resolution with mean detection efficiencies (DEs) exceeding 70%. DEs for this campaign were obtained via comparison with flashes from FEGS.

The Earth Networks Total Lightning Network (ENTLN) detects low frequency sferics in the 1-12 MHz range. The CG and IC DEs were ~100% for CG flashes and ~79% for IC flashes. When launched into a geostationary orbit in 2022, TEMPO will scan North America from east to west hourly measuring changes in NO₂, O₃, and other pollutants

In the future, we plan on taking advantage of the synergy between the two geostationary instruments by using TEMPO NO₂ with GLM flashes to obtain estimates of NO_x production per flash. A demonstration of this future synergy was possible through the GOES-R validation suborbital campaign

Airborne Instruments

• FEGS (Fig. 2, *Quick et al., 2017*) is an airborne array of multi-spectral radiometers optimized to study the optical emission from lightning through the cloud top. It provides a one to-one comparison to GLM observations. FEGS uses a 5 x 5 array of radiometers sensing at 777 nm. Each radiometer is pointed in a different direction, such that flashes can be continuously sensed in a ~10 x 10 km field of view as the ER-2 aircraft passes over a storm.

GCAS (Fig. 3, Kowalewski and Janz, 2014) contains two spectrometers that provide imaging capabilities from the UV to NIR. This spectral range is separated into UV/VIS (300-490 nm) and VIS/NIR (480 – 900 nm) channels. The UV/VIS channel is used primarily for atmospheric Combined FOV for GOES-17 and GOES-16 superimposed on climatological flash density from OTD-LIS (Goodman et al., 2013)

NO₂ vertical columns (lower right) are derived from

NO2 slant col

AMF NO2 wL

Vcol NO2 wl

slant columns (lower left) over pixels with CPL P < 300 hPa (upper left) using AMFs (upper right)

GCAS measures solar radiation backscattered from the surface and atmosphere (*Kowalewski and Janz*, 2014). NO₂ SCDs are derived by fitting a modeled spectrum to the observed spectrum using the QDOAS spectral fitting package.

4/20/17	Toronto LMA	2330	0015
4/22/17	N. Alabama LMA	2030	0030
5/8/17	NE Colorado LMA	2145	0100
5/12/17	LA/MS/Gulf of Mex	1415	2015
5/14/17	Atlantic Ocean off FL	1315	1715

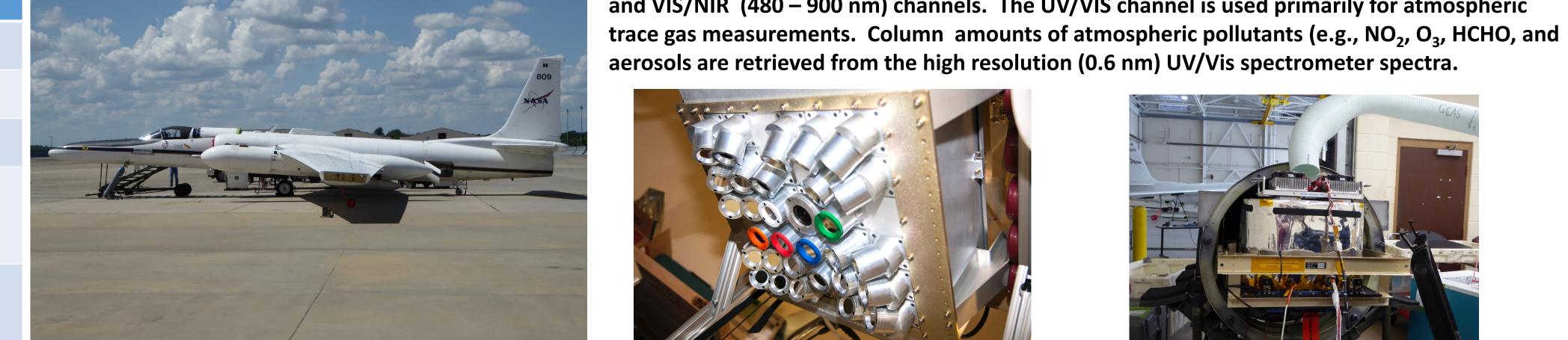
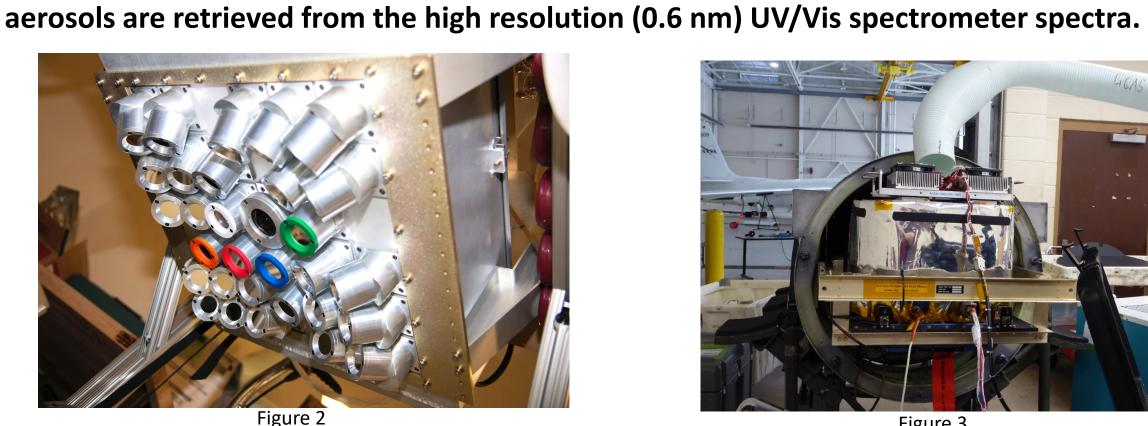
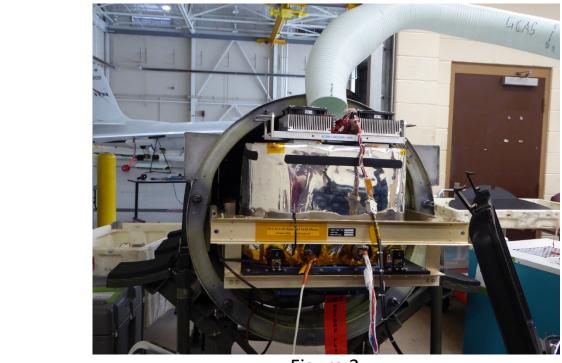
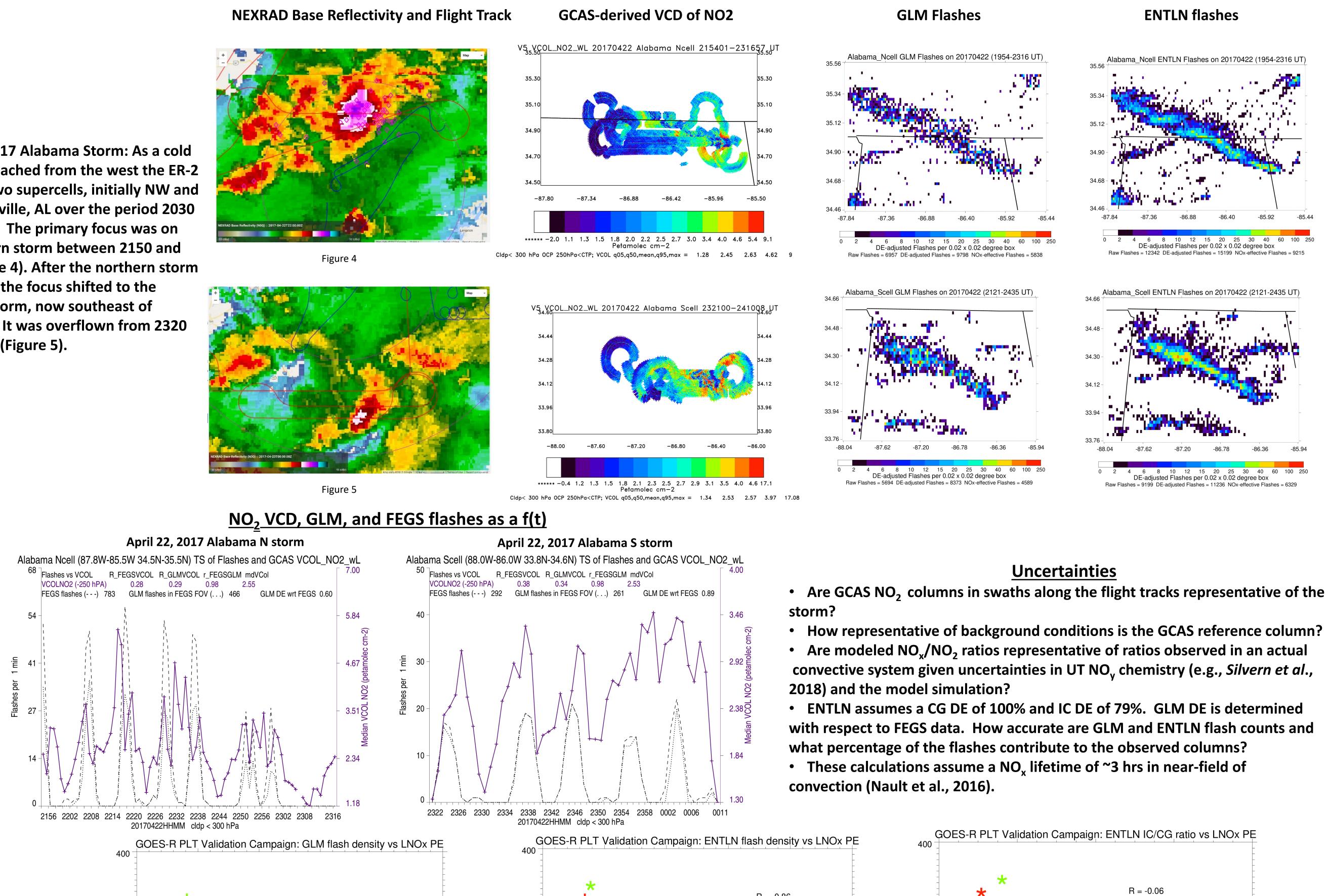





Figure 1

Thunderstorm Case Studies from the GOES-R Validation Campaign

GCAS is unable to obtain a solar reference spectra. Therefore, reference spectra required for trace gas retrievals are derived from nadir observations over a clean but cloudy region. The 2.5 minute period centered at 2213 UT May 8th was used during the GOES-R campaign.

SCDs are converted to tropospheric vertical column densities (VCDs) using air mass factors (AMFs) calculated with VLIDORT (*Lamsal et al.*, 2017) and tropopause pressures from MERRA-2.

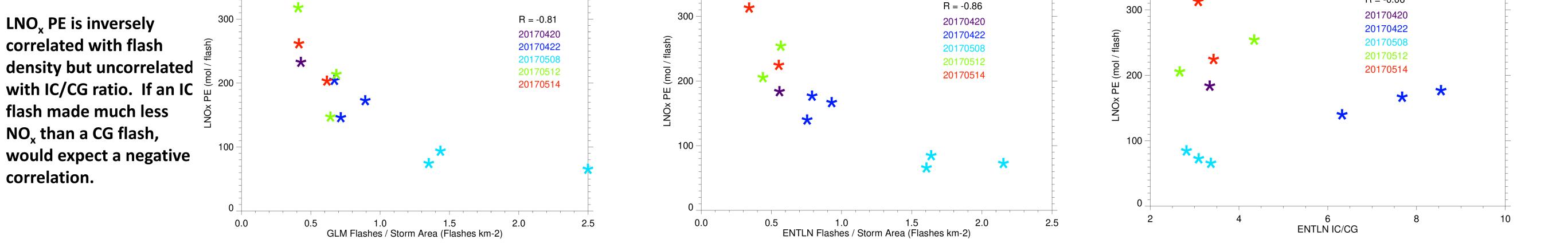
NO_x and NO₂ profiles needed to convert NO₂ VCDs to LNO_x VCDs are obtained from GEOS-5 GMI-Replay simulations performed with and without lightning NO_x.

GCAS data retrieved in form of 250 m x 250 m pixels (31 pixels cross track with averaging along track).

Uncertainty exists as to how far into the storm cloud GCAS is able to detect NO₂. We assume a depth of 250 hPa, which is the mean difference between the cloud pressure obtained by the CPL aboard the ER-2 during the May 12th flight, which occurred near the overpass time of OMI, and the OMI optical centroid pressure (OCP).

 LNO_x Production per Flash = [VCD_{NO2(median}) × Flash Area × rNO_x/NO₂] /[Avogadro's_number × Nflashes]

 rNO_{x}/NO_{2} = Flight-track averaged ratio of upper tropospheric LNO_x to LNO₂ from GEOS-5 on date & time of flight


Nflashes = Number of GLM or ENTLN flashes adjusted for 3 hour lifetime of NOx in near field of convection

Storm	Date	Time	Location	VCD	Flash area	rLNOx / LNO2	GLM (ENTLN) Flashes	GLM (ENTLN) DE	GLM (ENTLN) LNOx PE
Lake Erie	Apr 20	2312- 2352	41-43.5 N 82-77 W	2.55	13710 (23634)	2.15	8627 (21028)	0.76 (0.84)	211 (163)
AL_NS cells	Apr 22	2025- 2147	34-36N 88.5-86.5 W	2.27	11989 (16616)	3.60	15045 (21758)	0.78 (0.81)	151 (145)
AL_Ncell	Apr 22	2154- 2316	34.5-35.5N 87.8-85.5 W	2.45	8698 (11656)	3.03	9798 (15199)	0.71 (0.81)	183 (155)
AL_Scell	Apr 22	2321- 2435	33.8-34.6 N 88-86 W	2.53	6400 (8378)	2.14	8373 (11236)	0.68 (0.82)	125 (119)
CO_South	May 08	2146- 2300	39.75-40.0 N 105-104.2 W	2.12	1136 (1348)	3.18	4162 (4355)	0.45 (0.84)	44 (51)
CO_North	May 08	2146- 2345	40-41 N 105-104.2W	2.22	3698 (4485)	3.00	7913 (11428)	0.53 (0.85)	72 (63)
CO_East	May 08	2353- 2459	40-51 N 104-102.9 W	2.25	5137 (7029)	1.94	10281 (16630)	0.54 (0.84)	53 (45)
MS_AL_Line	May 12	1410- 1509	29.5-32.5N 92-87 W	2.43	11923 (21884)	3.28	10834 (18644)	0.64 (0.83)	192 (233)
Gulf Line	May 12	1520- 1640	28-29.25 N 93-90.5 W	1.32	2404 (2791)	3.71	2985 (2416)	0.48 (0.85)	126 (184)
Coastal Line	May 12	1653- 2013	29-31 N 91-87.5 W	1.94	27023 (35628)	3.79	28071 (34734)	0.65 (0.84)	297 (314)
Atl_Ecell	May 14	1240- 1359	29-31 N 75.5-72 W	2.06	17156 (25757)	3.29	16296 (24467)	0.70 (0.84)	182 (203)
Atl_Wcell	May 14	1419- 1710	29.1-30.1 N 75.5-73.5 W	1.77	7545 (9056)	3.40	9007 (8828)	0.64 (0.84)	240 (292)
									157 ± 76 (164 ± 87)

April 22, 2017 Alabama Storm: As a cold front approached from the west the ER-2 overflew two supercells, initially NW and W of Huntsville, AL over the period 2030 to 2310 UT. The primary focus was on the northern storm between 2150 and **2310 (Figure 4). After the northern storm** weakened, the focus shifted to the southern storm, now southeast of Huntsville. It was overflown from 2320 to 0030 UT (Figure 5).

Conclusions

GCAS NO₂ columns were analyzed in relation to observed lightning during 12 storms overflown by the ER-2 aircraft on 5 flight days during the GOES-R Validation Campaign LNO, PE was found to be ~160 ± 80 mol per flash approximately the same as the 180 ± 100 mol/flash found by Bucsela et al. (2019) for mid-latitude lightning through analysis of OMI NO₂ data.

LNOx PE is similar using GLM and ENTLN, as a greater number of ENTLN flashes is accompanied by larger storm area

LNO_x PE is negatively correlated with flash density (R=-0.81) consistent with belief that storms with high flash densities have smaller individual flash channel lengths and produce less NO, per flash. However, it is uncorrelated with the IC/CG ratio.

Acknowledgments: Funding to S. Janz, GSFC PI, under the GEO-CAPE project (J. Al Saadi), with subaward to D. Allen, UMD PI. Thanks to Luke Oman for assistance in setting up the GMI replay simulations.