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The Remote Sensing Branch of the Oceanographic Data Collection Division at the Naval Oceanographic Office (NAVOCEANO) is responsible for providing near-real-time oceanographic measurements to the US Navy, as well as other government agencies.
With developmental assistance from the Naval Research Lab (NRL), numerous sets of GOES and JPSS satellite data are processed in house for input to the Navy’s Global Ocean Forecast System (GOFS) and the Navy Global Environmental Model (NAVGEM).

MCSST

MCSST produces Sea Surface Temperatures (SST) using multiple
polar orbiting and geostationary satellites with an in-house suite of
software. GOES-16 data, acquired via NCEP College Park, is
processed in-house utilizing channels 2, 3, 7, 13, 15, and 16, from
the Advanced Baseline Imager (ABI). NAVO processes full disks every
10 minutes with 4km resolution SSTs (2x2 grid). VIIRS data is
processed using channels 5, 7, 12, 15, 16, and associated
geolocation data. NAVO processes 85 second granules in near-real-
time resulting in daily global coverage with 1.5km resolution (2x2
grid of 750m). SST measurements are an important parameter
assimilated into oceanographic and atmospheric forecasts, which
constrain circulation model initial conditions and quantify the flux
energy exchange between the ocean and atmosphere. Real-time
ocean prediction systems readily assimilate SST, along with other
oceanographic measurements, to generate mesoscale ocean
forecasts for operational maritime activities.

AOPS

The Automated Optical Processing System (AOPS)
produces in-water water clarity and visibility from
multiple satellite-borne sensors, including VIIRS. The
near-real-time products are used by warfighters in the
Navy to accomplish their tasks more safely, efficiently
and effectively. Historical climatology products are also
generated for mission asset scheduling. The in-water
optical products are implemented in mission planning
and naval operations around the globe.

MMSPS

The Multi Mission Satellite Processing Segment (MMSPS) is a
system that converts Suomi National Polar-orbiting Partnership (S-
NPP), and Joint Polar Satellite System (JPSS-1, now NOAA-20)
Extended Application Packet (EAP) raw files for the Visible Infrared
Imaging Radiometer Suite (VIIRS) and Advanced Technology
Microwave Sounder (ATMS) sensors into Raw Data Records (RDRs).
Those are then fed through the Community Satellite Processing
Package (CSPP), developed by the University of Wisconsin, to
create Sensor Data Records (SDRs). Those SDRs are used by the
NRL Ocean Surface Flux System (NFLUX), the Ice Concentration
Processing System (ICPS), the Multi Channel Sea Surface
Temperature System (MCSST), and the Automated Optical
Processing System (AOPS) at NAVOCEANO for in-house data
processing and product creation, to support naval operations.

ICPS

ICPS is a system for operationally producing near-real-
time ice concentration products from S-NPP, NOAA-
20, and Global Change Observation Mission – Water
"Shizuku" (GCOM-W1) satellites. Using VIIRS and
Advanced Microwave Scanning Radiometer 2
(AMSR2) inputs, it creates ice concentration products
for the northern and southern hemispheres. Future
updates include higher resolution products and
implementation of NOAA-20.

NFLUX

NFLUX is a data processing and assimilation
system used to provide near-real-time satellite
based surface heat flux fields over the ocean. This
system provides satellite based 3-hourly gridded
analysis fields over the global ocean for the near-
surface parameters of air temperature, specific
humidity, wind speed, solar radiation, and
longwave radiation. NFLUX uses multiple inputs,
including ATMS, from over a dozen different
satellites to provide fluxes that will be used to
determine NAVGEM bias corrections over the
ocean in near-real-time.
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• The VIIRS Day/Night Band (DNB) sensors onboard NOAA‐20 and SNPP satellites, being 50 minutes apart along the same orbit,
provide nighttime imagery of clouds, nocturnal lights, aurora etc., and have been used for a variety of studies involving both
geophysical and socio‐economic activities.

• Recent SNPP and NOAA‐20 DNB calibration algorithm updates focused improving imagery quality of DNB by addressing the
striping in high aggregation zones due to residual nonlinearity.

• To synchronize with the improved DNB calibration algorithm, monthly DNB stray light correction LUTs for SNPP and NOAA-20
have also been updated. This poster reports updates that have been performed for SNPP and NOAA-20 DNB stray light correction
and evaluates the improvements in DNB imagery product.

• Examples of applications of DNB data products in observations of aurora activities during severe solar storms, deep convective
cloud monitoring, observation of light emission from lava flow during volcano eruption and monitoring of impacts of global event
on social activities are also given.

Abstract

SNPP and NOAA‐20 DNB Calibration Update and Stray Light Correction 

Summary

Figure 1. SNPP DNB image over Southern Hemisphere (Left) corrected with recycled stray light correction LUT (Middle) and corrected 
with improved stray light correction LUT (Right) developed by NOAA/STAR. City lights are better revealed with the improved stray light 
correction LUT.

• Details on recent updates and development of SNPP and NOAA‐20 DNB calibration can be found in the poster by Gu et al. presented 
in this session. The calibration algorithm improvements are mainly to reduce strong striping at the end aggregation zone. 

• DNB stray light has been observed over both the Northern and the Southern Hemisphere. Origin of the DNB stray light may be due to 
the leaking of solar light near the extended zone and through the VIIRS Earth view and solar diffuser view aperture. To maintain 
consistency between DNB stray light correction and calibration algorithm update, monthly DNB stray light correction LUTs have been 
routinely generated by NOAA/STAR for operational DNB data production.

Applications of Day/Night Band

Figure 9: Comparison of night light distribution around Wuhan city, China observed by SNPP DNB before and after the coronavirus
outbreak. City light reduction in both magnitude and spatial distribution after one third of city population left the city and with reduced
socio-economical activities due to city lockdown on Jan. 23, 2020 can be clearly seen. DNB data provide unique capability for monitoring
night light variation during global events.

• Maintained consistency between SNPP/NOAA-20 DNB stray light correction and recent DNB calibration algorithm update.
• Improved DNB data quality with updated stray light correction for SNPP by removing remnant stray light.
• Radiometric bias trending of SNPP and NOAA-20 DNB over pseudo-invariant calibration sites under moon light shows the radiometric

consistency between SNPP and NOAA-20 DNB is within 3-5% with SNPP being higher. Part of the bias is due to the spectral response
differences and the use of different solar irradiance spectra for DNB calibration. The rest may be from the calibration uncertainties.

• DNB observation of Deep Convective Cloud enables inter-calibration between SNPP and NOAA-20 DNB using lunar radiances.
• SNPP and NOAA-20 DNB data enable applications in monitoring large spatial scale and temporal variation of aurora light during severe

solar storms, nocturnal light variation during global social event, and monitoring light emission variation during global natural disaster
events such as lava flow due to volcano eruption.

References:
Cao, C., X. Shao, and S. Uprety, “Detecting light outages after severe storms using the S-NPP/VIIRS Day/Night Band radiances,” IEEE
Geosci. Remote Sens. Lett. 10, 1582-1586 (2013).
Cao, C. et al., Radiometric Inter-Consistency of VIIRS DNB on Suomi NPP and NOAA-20 from Observations of Reflected Lunar Lights
over Deep Convective Clouds. Remote Sens. 2019, 11, 934.
Gu, Y. et al., Improvement of Visible Infrared Imaging Radiometer Suite
Day/Night Band Image Quality, poster in this meeting, 2020.
Miller, S. D. and R. E. Turner, "A Dynamic Lunar Spectral Irradiance Data Set for NPOESS/VIIRS Day/Night Band Nighttime
Environmental Applications," in IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 7, pp. 2316-2329, July 2009.

Inter‐Comparison of Radiometric Performance between SNPP and 
NOAA‐20 DNB

Figure 3: Example of NOAA-20 DNB correction over northern 
and southern hemisphere. Spatial distribution and radiometric 
features of nocturnal lights and aurora are better revealed after 
stray light correction. 

Figure 2: Comparison of stray light correction with  recycled and new stray light correction LUT over northern and southern hemisphere 
indicates the remnant stray light magnitude is ~1 nW/cm2-sr which were significantly reduced with improved stray light correction.

Figure 5: Radiometric consistency (within 3-5% over ~2 years) between SNPP and NOAA-20 DNB are demonstrated through long term 
monitoring of TOA reflectance derived from vicarious measurements over various pseudo-invariant calibration sites:  two snow flats (~0.9 
TOA Reflectance) and three desert sites, being illuminated by Moon Light. Lunar irradiance model from Miller and Turner, 2009 has been 
used to derive the TOA reflectance.

Monitoring of Hawaii Kilauea Volcano Eruption and Lava Flow with NOAA-20 VIIRS DNB

Figure 6: The DNB radiance map over southern hemisphere in solar-magnetic (SM) coordinates from UT 6:31 on June 22 to UT 18:19 on
June 23, 2015. Two coronal mass ejections (CME) occurred on June 19 and 21, 2015 and had made their way to Earth to cause a G4
(severe) geomagnetic storm on June 22, 2015. Overall evolution of aurora such as initial appearance, growth, expansion and decay phases
were observed in successive DNB overpasses. DNB observations monitored spatial and temporal variation of aurora activities and help
understand particle/plasma flow and electromagnetic energy coupling in Sun-Magnetosphere-Ionosphere system during geomagnetic storms.

Aurora Activities during Severe Solar Storm Observed by SNPP DNB

Figure 7: Night light observation of Deep Convective Cloud under 
moon light by DNB provides unique opportunity to perform inter-
calibration of VIIRS DNB between SNPP and NOAA-20 using lunar 
radiances. (Cao et al., 2019)

With Stray Light

Southern Hemisphere Northern Hemisphere

Figure 4: Example of updating stray light correction LUT for NOAA-
20 DNB to remove the strong striping in aggregation zone 21 after the 
update of calibration algorithm to address issues of detector 
nonlinearity in high aggregation zone.  

Striping in Zone 21

SNPP DNB

Figure 8: DNB data enable night time monitoring of natural disaster 
events. The observation of light emission from high temperature 
lava flow during Hawaii Kilauea volcano eruption by DNB shows 
the entry of lava into ocean on May 21, 2018, which is consistent 
with the in-situ measurements by USGS.

Global Event Impact Monitoring: Nocturnal Light Variation before and after Wuhan City 
Lockdown due to Coronavirus Outbreak

Before After

Deep Convective Cloud Observation under 
Moon Light

DNB Observation of Lava Flow during Hawaii 
Kilauea Volcano EruptionNOAA‐20 DNB Stray Light Correction

SNPP DNB Stray Light Correction

Northern Hemisphere

Southern Hemisphere

• For NOAA‐20 DNB, to synchronize with the improved DNB calibration algorithm and maintain consistency between DNB stray light 
correction and calibration algorithm update, monthly DNB stray light correction LUTs have been routinely generated for one additional 
full year until November, 2019. 

SNPP DNB Stray Light Correction

• There were remnant stray light of the magnitude ~1 nW/cm2-sr in the SNPP DNB image over the southern hemisphere resulting from 
the use of static yearly-recycled stray light correction LUTs (twelve sets) generated during 2014 and 2015. To address this issue, the 
stray light correction algorithm was improved to support operational SNPP DNB calibration since May, 2019. 
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• The VIIRS DNB onboard S-NPP and NOAA-20 is a panchromatic visible and near-

infrared band (0.5 ~ 0.9 μm) for Earth observation both day and night.

• The DNB is effectively an integration of three separate bands, i.e., Low-Gain Stage

(LGS) for daytime scenes, Mid-Gain Stage (MGS) for twilight scenes and High-Gain

Stage (HGS) for nighttime scenes.

• The HGS is able to detect lunar illuminated Earth surface, clouds and artificial lights

such as city light, boat, ships, street light etc.

• The extreme sensitivity to low light enables many image based applications, including

monitoring of power outages after natural disasters and automated fishing boat

detection.

• The three gain stage design makes radiometric calibration of the HGS complicated.

Artifacts like striping are shown in the calibrated nighttime images.

• The HGS is calibrated by two key parameters that is dark offset and gain.

• The HGS dark offset is determined by tracking on-orbit change on top of the baseline

HGS dark offset by the DNB observation of deep space collected during the spacecraft

pitch maneuver early in the mission.

• The HGS gain is obtained by transferring LGS gain through multiplying the MGS/LGS

and HGS/LGS gain ratios evaluated in the twilight region.

• The HGS dark offset, MGS/LGS and HGS/MGS gain ratios are updated monthly using

data collected during new moon nights.

• In this paper, we present our efforts for improving quality of the DNB nighttime images

by radiometric calibration updates.

• This study summarized radiometric calibration updates for improving image quality of

VIIRS DNB onboard both S-NPP and NOAA-20 satellites.

• Major improvements include:

• Correction of striping due to detector nonlinearity

• Continuous DNB LGS gain degradation correction by modulated RSRs

• DNB data collected during early mission calibrated with the postlaunch LUTs

• Straylight corrected DNB data available since early mission

• Enhanced low light detection by the deep space based HGS dark offset

• Reprocessed SNPP VIIRS SDR data including DNB from early mission to March 2017

are available at https://ncc.nesdis.noaa.gov/VIIRS/index.php
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Introduction

Summary

Abstract

The Day/Night Band (DNB) is a panchromatic visible and near-infrared band of the

Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the Suomi National Polar-

orbiting Partnership (S-NPP) and NOAA-20 satellites. Because of its three gain stage

design, i.e., Low-Gain Stage (LGS) for daytime scenes, the Mid-Gain Stage (MGS) for

twilight scenes, and the High-Gain Stage (HGS) for nighttime low light scenes, the DNB

is capable of quantitative measurement of light radiances from 3 × 10−9 W∙cm-2∙sr-1 to

2 × 10−2 W∙cm-2∙sr-1. The extreme sensitivity to low light enables numerous

applications of environmental remote sensing and anthropogenic activities monitoring

in nighttime. However, the three gain stage design makes radiometric calibration of the

DNB’s nighttime data complicated. Artifacts like striping are shown in the calibrated

nighttime images. In this paper, we present our efforts for improving image quality of

VIIRS DNB onboard both S-NPP and NOAA-20 by updating radiometric calibration

algorithms. Our work is beneficial for applications that require high quality of DNB

nighttime images.

• Image analysis shows that strips are from the DNB detectors with non-negligible nonlinearity in the

low dynamic range.

• The MGS/LGS gain ratios of these detectors determined by the original algorithms are biased,

consequently making the corresponding HGS gains biased (GHGS = GHGS/MGS × GMGS/LGS × GLGS,

Figure 2).

Figure 2. (a) LGS gain, (b) MGS/LGS gain ratio, (c)

HGS/MGS gain ratio, and (d) HGS gain for all detectors

of aggregation mode 21 used for radiometric calibration

of the NOAA-20 VIIRS DNB nighttime image shown in

Figure 1.
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Correction of Striping due to Detector Nonlinearity

• Striping has been found in many aggregation zones of both the S-NPP and NOAA-20

VIIRS DNB nighttime imagery.

• Aggregation zone 21 of NOAA-20 VIIRS DNB is a typical example, shown in Figure 1.

• Because of the special aggregation option known as Option 21, about 30% pixels of a

NOAA-20 VIIRS DNB image are in aggregation zone 21.

• Striping severely degrades the quality of the NOAA-20 VIIRS DNB nighttime imagery.

(a)

(b)(c)

Figure 1. (a) NOAA-20 VIIRS DNB nighttime image recorded at 10:54 UTC, June 28, 2018. (b)

striping in aggregation zone 21, right side of (a). (c) The detectors’ radiances of a scan in (b).
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Figure 3. (a) GMGS/LGS determined by the

original algorithm and the linear regression

method. (b) Relative difference [100% ×

(linear - original)/linear]

• Such biased gain ratios can be corrected by the improved algorithm based on linear regression.

(Figure 3).

• Striping in the reprocessed DNB nighttime images, in particular those under moonlight illumination,

is significantly reduced (Figure 4).

• DNB gain ratios LUTs created by the improved algorithm have been used in operational calibration

for both the S-NPP and NOAA-20 VIIRS DNB since March 2019 and November 2018 respectively.

Figure 4. (a) NOAA-20 VIIRS DNB nighttime image recorded at 07:31 UTC, June 28 2018. (b) striping in

aggregation zone 21, left side of (a). (c) reprocessed image by the updated gain ratios.

San Antonio, TX

(a)

(b) (c)

Improved SNPP VIIRS DNB Image Quality after Reprocessing

• Significantly improved quality of the DNB data collected before March 20, 2012 which

were originally calibrated with the prelaunch LUTs .

reprocessed

original

09:17 UTC, 3/20/2012

• Straylight corrected DNB data available since early mission of SNPP.

reprocessed

original

07:14 UTC, 8/12/2012

• Enhanced low light detection by the deep space based HGS dark offset

reprocessed

original

10:02 UTC, 11/24/2016

(a) (b)

Reprocessed SNPP VIIRS DNB SDRs from early mission to March 2017

accommodate calibration updates since launch

• Continuous DNB LGS gain degradation using modulated relative spectral response (RSR) function,

benefiting application of nightlight time series for study of socioeconomic changes (Figure 5).

Figure 5 DNB LGS gain trends (aggregation mode 1). (a) Using only one update in RSR (April 4, 2013). (b) Using 

continuous sets of time-dependent RSRs for reprocessing.
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https://ncc.nesdis.noaa.gov/VIIRS/index.php
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Enterprise JPSS VIIRS LST Product Introduction

 NDE Land Surface Temperature Product

 Based on split window technique

T11 and T12 : the TIR split-window channel BTs
e and De: mean emissivity at the TIR spectrum, and the emissivity difference

LUT {C} dimension: Day/night, View Zenith Angle, Total Column Water Vapor

 Granule (L2) and gridded (L3) LST product for both SNPP 
VIIRS and NOAA 20 VIIRS

 L2 VIIRS LST has been in operational and the L3 VIIRS LST was 
just put into operational.

Cross-comparison with AQUA MODIS LST

Summary
 The enterprise VIIRS LST products has a pretty good agreement with the ground measurements from SURFRAD, BSRN and GMD stations 

based on multiple years of data validation.

 The enterprise NOAA 20 VIIRS LST is in between the L3 MYD11A1 and MYD21A1 LST for both daytime and nighttime.  
 The long term monitoring is ready for both SNPP and NOAA 20 VIIRS LST. 
 LST application has been used in model LST verification, data assimilation to adjust 2m Tair and 1 km soil moisture product development etc. 

Ready to provide  long term climate data records for users. 

L2 VIIRS LST (left) and L3 VIIRS LST (Right)

 AQUA MODIS LST Product

 MYD11A1: Split window algorithm

 MYD21A1: TES algorithm

 NOAA 20 VIIRS LST product

User Applications and feedback

TS = C0 + C1T11 + C2(T11 - T12) + C3e + C4e(T11 – T12) + C5 De
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Night

Day

LST Estimation: cold to warm 

Attribute 

Analyzed

Analysis/Validation 

Result

Cross satellite 

Comparison

L3 NOAA 20 LST 

vs MYD11A1 

Nighttime: 0.61(1.18)

Daytime:0.38 (2.04) 

L3 NOAA 20 LST 

vs MYD21A1 
Nighttime: -0.30(1.31)

Daytime:-1.20 (2.36) 

NDE Land Surface Temperature access
 The L2 enterprise VIIRS LST is available at NOAA CLASS under group of “JPSS VIIRS Product(granule)(JPSS-GRAN)”.  available at 

https://www.avl.class.noaa.gov/saa/products/psearchJPSS_GRAN
 The L2 enterprise SNPP VIIRS data has been available since 06/06/2019 and J01 VIIRS LST has been available since 09/18/2019. Both are in the 

updated version v1r2 with most recent updates implemented. 
 Also available at SCDR under  data type “VIIRS-LST” for STAR internal users and interested groups.

The global L3 data in Jan, Feb, Mar and Apr. 2019 
were used for the cross comparison between L3 
N20 VIIRS LST and MYD11A1 LST and MYD21A1 
LST. Global mean difference was analyzed for 
daytime and nighttime LST.

Global monitoring

Site monitoring

Weekly email notification

ftp://ftp.star.nesdis.noaa.gov/pub/smcd/emb/pyu/LTM/LST/single/JPSS1_VIIRS/ or /SNPP_VIIRS/ 

Ground Validation

Long Term Monitoring

NOAA 20 LST validation

SNPP LST validation

Cron start

Online Data inquiry

Geo-location & 
temporal matchup

VIIRS
SURFRAD

FTP/Web 
server

End

QC & Cloud 
Screening

Email to users

Graphics, Data 
table, & log

• Global LST monitoring for both SNPP and 
NOAA20

• Site wide monitoring and routine validation
• Provide subset data and global 5km 

composite data
• Various output in graphics, table and log file
• Weekly email notification with details for 

outliers beyond the threshold.Routine site validation

• NCEP/EMC Modeling

─ VIIRS NDE LST product is in operational need 
for model output verification purpose

• RTMA/URMA system data assimilation

─ To assimilate VIIRS LST into RTMA system to 
adjust the 2m air temperature

• Near real time I km SMAP soil moisture (SM) 
product development 

─ VIIRS LST data is used as an input in the NRT 1 
km SMAP Soil Moisture Data Product 
development

• Temporal and spatial variability of daytime land 
surface temperature in Houston

─ SNPP VIIRS LST data is used as a reference to 
compare with aircraft LST observations during 
the NASA’s DISCOVER-AQ (Deriving Information 
on Surface Conditions from Column and 
Vertically Resolved Observations Relevant to 
Air Quality) field campaign in September, 
2013.. 

(a) The analysis increment shows the difference between the 
adjusted T2M after/before LST assimilation. Red color indicates 
an increased model T2M, blue color indicates a decreased T2M.
(b) quality control results: red dot for pixels fail the quality 
control; blue dots for pixels selected for assimilation
(c) Model T2M before data assimilation
(d) Model T2M after LST assimilation
The bottom two surface weather map show the adjust of T2M 
field looks reasonable. (Courtesy of Xiaoyan Zhang)

Sample maps for (a) SMAPV5 25 
km and (b) the downloaded 1 km 
SMAP SM retrievals on August 3, 
2018.

LST provides ancillary information on soil 
moisture distributions, and thus can be 
used to produce finer resolution satellite 
soil moisture retrievals. Particularly, 
agreements between the developed 1 km 
SM and in situ SM observations are 
comparable to the 25 km SMAP data, 
while the accuracy level is significantly 
improved with the advance of the fine 
scale satellite SM measurements. 
(Courtesy of Jifu Yin)

a b

c d

NOAA20 VIIRS LST

SNPP VIIRS LST 

Snow surface

• Six sites from SURFRAD network in Continental US; two sites from BSRN network in Netherland and Namibia; one site in Summit, Greenland. 
• For SNPP LST validation: over seven years of SURFRAD observations from Feb. 2012 to Oct. 2019 ; over four years of BSRN observations from 

January 2015 to Oct. 2019 were used. For NOAA 20 LST validation: the data covers the time period  from Jan. 2018 to Oct. 2019. 
• Overall good agreement; consistent performance between SNPP and NOAA20 LST; LST over snow surface is affected by cloud contamination

https://www.avl.class.noaa.gov/saa/products/psearchJPSS_GRAN
ftp://ftp.star.nesdis.noaa.gov/pub/smcd/emb/pyu/LTM/LST/single/JPSS1_VIIRS/
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 L2 VIIRS LST has been in operational and the L3 VIIRS LST was 
just put into operational.

Cross-comparison with AQUA MODIS LST

Summary
 The enterprise VIIRS LST products has a pretty good agreement with the ground measurements from SURFRAD, BSRN and GMD stations 

based on multiple years of data validation.

 The enterprise NOAA 20 VIIRS LST is in between the L3 MYD11A1 and MYD21A1 LST for both daytime and nighttime.  
 The long term monitoring is ready for both SNPP and NOAA 20 VIIRS LST. 
 LST application has been used in model LST verification, data assimilation to adjust 2m Tair and 1 km soil moisture product development etc. 

Ready to provide  long term climate data records for users. 

L2 VIIRS LST (left) and L3 VIIRS LST (Right)

 AQUA MODIS LST Product

 MYD11A1: Split window algorithm

 MYD21A1: TES algorithm

 NOAA 20 VIIRS LST product

User Applications and feedback

TS = C0 + C1T11 + C2(T11 - T12) + C3e + C4e(T11 – T12) + C5 De
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MYD11A1 MYD21A1L3 NOAA 20 LST

MYD11A1 MYD21A1L3 NOAA 20 LST

Night

Day

LST Estimation: cold to warm 

Attribute 

Analyzed

Analysis/Validation 

Result

Cross satellite 

Comparison

L3 NOAA 20 LST 

vs MYD11A1 

Nighttime: 0.61(1.18)

Daytime:0.38 (2.04) 

L3 NOAA 20 LST 

vs MYD21A1 
Nighttime: -0.30(1.31)

Daytime:-1.20 (2.36) 

NDE Land Surface Temperature access
 The L2 enterprise VIIRS LST is available at NOAA CLASS under group of “JPSS VIIRS Product(granule)(JPSS-GRAN)”.  available at 

https://www.avl.class.noaa.gov/saa/products/psearchJPSS_GRAN
 The L2 enterprise SNPP VIIRS data has been available since 06/06/2019 and J01 VIIRS LST has been available since 09/18/2019. Both are in the 

updated version v1r2 with most recent updates implemented. 
 Also available at SCDR under  data type “VIIRS-LST” for STAR internal users and interested groups.

The global L3 data in Jan, Feb, Mar and Apr. 2019 
were used for the cross comparison between L3 
N20 VIIRS LST and MYD11A1 LST and MYD21A1 
LST. Global mean difference was analyzed for 
daytime and nighttime LST.

Global monitoring

Site monitoring

Weekly email notification

ftp://ftp.star.nesdis.noaa.gov/pub/smcd/emb/pyu/LTM/LST/single/JPSS1_VIIRS/ or /SNPP_VIIRS/ 

Ground Validation

Long Term Monitoring

NOAA 20 LST validation

SNPP LST validation

Cron start

Online Data inquiry

Geo-location & 
temporal matchup

VIIRS
SURFRAD

FTP/Web 
server

End

QC & Cloud 
Screening

Email to users

Graphics, Data 
table, & log

• Global LST monitoring for both SNPP and 
NOAA20

• Site wide monitoring and routine validation
• Provide subset data and global 5km 

composite data
• Various output in graphics, table and log file
• Weekly email notification with details for 

outliers beyond the threshold.Routine site validation

• NCEP/EMC Modeling

─ VIIRS NDE LST product is in operational need 
for model output verification purpose

• RTMA/URMA system data assimilation

─ To assimilate VIIRS LST into RTMA system to 
adjust the 2m air temperature

• Near real time I km SMAP soil moisture (SM) 
product development 

─ VIIRS LST data is used as an input in the NRT 1 
km SMAP Soil Moisture Data Product 
development

• Temporal and spatial variability of daytime land 
surface temperature in Houston

─ SNPP VIIRS LST data is used as a reference to 
compare with aircraft LST observations during 
the NASA’s DISCOVER-AQ (Deriving Information 
on Surface Conditions from Column and 
Vertically Resolved Observations Relevant to 
Air Quality) field campaign in September, 
2013.. 

(a) The analysis increment shows the difference between the 
adjusted T2M after/before LST assimilation. Red color indicates 
an increased model T2M, blue color indicates a decreased T2M.
(b) quality control results: red dot for pixels fail the quality 
control; blue dots for pixels selected for assimilation
(c) Model T2M before data assimilation
(d) Model T2M after LST assimilation
The bottom two surface weather map show the adjust of T2M 
field looks reasonable. (Courtesy of Xiaoyan Zhang)

Sample maps for (a) SMAPV5 25 
km and (b) the downloaded 1 km 
SMAP SM retrievals on August 3, 
2018.

LST provides ancillary information on soil 
moisture distributions, and thus can be 
used to produce finer resolution satellite 
soil moisture retrievals. Particularly, 
agreements between the developed 1 km 
SM and in situ SM observations are 
comparable to the 25 km SMAP data, 
while the accuracy level is significantly 
improved with the advance of the fine 
scale satellite SM measurements. 
(Courtesy of Jifu Yin)

a b

c d

NOAA20 VIIRS LST

SNPP VIIRS LST 

Snow surface

• Six sites from SURFRAD network in Continental US; two sites from BSRN network in Netherland and Namibia; one site in Summit, Greenland. 
• For SNPP LST validation: over seven years of SURFRAD observations from Feb. 2012 to Oct. 2019 ; over four years of BSRN observations from 

January 2015 to Oct. 2019 were used. For NOAA 20 LST validation: the data covers the time period  from Jan. 2018 to Oct. 2019. 
• Overall good agreement; consistent performance between SNPP and NOAA20 LST; LST over snow surface is affected by cloud contamination

https://www.avl.class.noaa.gov/saa/products/psearchJPSS_GRAN
ftp://ftp.star.nesdis.noaa.gov/pub/smcd/emb/pyu/LTM/LST/single/JPSS1_VIIRS/


§ Surface Albedo (SURFALB), defined as the ratio between solar 
radiation reflected by Earth's surface and solar radiation incident at the 
surface, is a function of both solar illumination and the surface 
reflective properties. 

§ NOAA provides operational daily mean shortwave albedo over land and 
sea-ice surface from VIIRS data. The latest version (v1r2) S-NPP and 
NOAA-20 VIIRS Albedo have been available since 09/19/2019 and can 
be accessed from CLASS. 

§ The SURFALB products are also available at SCDR under data type 
“VIIRS-SURFALB” for STAR internal users and interested groups.

§ The NOAA VIIRS albedo algorithm deploys a single clear-sky 
observation to estimate daily mean albedo, which is straightforward and 
stable for online processing. For cloudy pixels, the albedo fill value 
comes from a temporal filtered result which integrates information from 
preceding 9-days and the climatology. The clear-sky retrievals are 
regarded as high-quality ones. 

§ The SNPP and JPSS1 VIIRS albedos demonstrate slight difference due 
to the orbit difference, and the LUT sensitivity to angles. The
inconsistency may cause some inconvenience for some users.

§ Blending VIIRS albedos from SNPP and JPSS1 would increase the 
clear-sky observations at most locations and the percentage of  high-
quality retrievals.

§ The current blending algorithm in test is an albedo-level-composition
using L2 SURFALB data as input.

ABSTRACT

Current	ALGORITHM

INTER-COMPARISON GLOBAL	BLENDED

CONCLUSIONS

• SNPP and JPSS1 VIIRS albedo provides high-quality,
comparable, and continuous retrievals.

• The single-day directly-retrieved albedo difference between
SNPP and JPSS1 is attributed to the orbit difference and the
sensitivity of LUT to angle difference.

• The preliminary blended-VIIRS-albedo product, from SNPP
and JPSS1, is an example of data fusion to yield a unified and
improved albedo product. The blended product has enhanced
high-quality retrieval coverage, clear-sky observation coverage,
and data accuracy compared to in-situ measurements.

• The blended albedo will be more friendly to users since it
provides one better product instead of separate products from
different sensors with slight inherent inconsistency.

• Various blending calculation methods would be further tested
on the VIIRS daily mean albedo. The current blending
algorithm is conducted at L2-albedo level, more blending
algorithms at reflectance-level or L3-albedo level would also be
considered.
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Jingjing Peng1, Yunyue Yu2, Peng	Yu1
Blended	shortwave	daily	mean	albedo	from	SNPP	and	JPSS1 VIIRS	observations

ai is regression coefficient for Band i, which varies with surface cover 
type, solar-object-view geometry angles, latitude, and day of year.
i is VIIRS band number, including the channels  1,2,3,4,5,7,8,10 and 11.

SITE	LEVEL	BLENDED

VIIRS	surface	albedo	monitoring webpage

𝐿𝑆𝐴 = 𝛼& +(𝛼)𝑟)

�

�

Level-2 albedo monitoring example

LIMITATIONS

o The V2 climatology in framework is waiting to be applied in
NDE in queue, which has more complete sea-ice surface
coverage. The v3 climatology is in development, which would
provide more continuous result over Greenland and Antarctic.

o The site blended result is reprocessed from IDPS snow mask,
cloud mask, surface type, and ice concentration, as the NDE
version EDRs is only available since Sep 2019.

VIIRS surface albedo sample (figure a) provides a favor of the NOAA-20 VIIRS albedo 
product. The corresponding view time record (figure b) and view zenith angle (figure c) 

explains the difference existed in the TOA reflectance (figure d) used as input to the algorithm. 
The algorithm well handles such difference, but still with some exceptions that slight spatial 

discontinuity occasionally appears over Antarctic, Australia and Europe.  

(a)

(d)(c)

(b)

JPSS1 and SNPP VIIRS albedo are compared to check their consistency,
which is important for NOAA users. The global mean discrepancy shows
they are generally consistent in overall magnitude, but with slight
difference due to different orbit and solar/view zenith angles.
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Time series of global mean difference

Daily comparison between related factors

The comprison over other SURFRAD sites

§ Data period: Jan 01, 2018~ Oct 16, 2019
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NOAA-20 Green Vegetation Fraction (GVF) Product 

Zhangyan Jiang1, Mingshi Chen1, Corinne Carter2, Yunyue Yu3

1 IMSG at NOAA/NESDIS/STAR. 2 ESSIC/ UMD/ NOAA, 3 NOAA/NESDIS/STAR, College  Park, MD, 20740.

JPSS/GOES-R Proving Ground / Risk reduction Summit, Feb 24-28, 2020, College Park, MD 20740 

VIIRS GVF 

 Green Vegetation fraction (GVF) is defined as the fraction of a pixel covered by green vegetation if it were viewed vertically.

 Real-time GVF is needed in the numeric weather, climate and hydrological models.

 The Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) GVF has been operationally

produced since Feb 2015 at NOAA.

 GVF are produced as a daily rolling weekly composite at 4-km resolution (global scale) and 1-km resolution (regional scale).

 As NOAA-20 (JPSS-1) data became available, the new NOAA-20 GVF product is developed and introduced in this poster

15.7Re6

Re
5.2






BluedNIR

dNIR
EVI

VIIRS GVF Algorithm

NOAA-20 Global 4-km GVF product

Flow chart of the GVF system

The GVF processing system generates daily rolling weekly GVF through the following steps:

Step 1:  VIIRS swath surface reflectance data in bands I1 (red), I2 (NIR), and M3 (blue) during a 

calendar day (0000 – 2400 UTC) are mapped to the native GVF geographic grid (0.003 degree plate carree 

projection) to produce a gridded daily surface reflectance map.   

Step 2: At the end of a 7-day period, the daily surface reflectance maps of the 7 days are composited 

to produce a weekly surface reflectance map using the MVA-SAVI compositing algorithm, which selects, at 

each GVF grid point (pixel), the observation with maximum view-angle adjusted SAVI (soil adjusted 

vegetation index) value in the 7-day period. The 7-day compositing is conducted daily using data in the 

previous 7 days as input data, which is called daily rolling weekly compositing. 

Step 3: EVI is calculated from the daily rolling weekly composited VIIRS surface reflectance data in 

bands I1, I2 and M3.
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EVIEVI
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20190809-20190815

NOAA-20 GVF VS. PhenoCam GCC  

Step 4:  High frequency noise in EVI is reduced by applying a 15-week digital 

smoothing filter (Sullivan, 1993) on EVI. 

Step 5: GVF is calculated by comparing the smoothed EVI against the 

global maximum (EVI∞) and minimum EVI (EVI0) values assuming a linear 

relationship between EVI and GVF.

Step 6: GVF is aggregated to 0.009 degree (1-km) and 0.036 degree (4-km) 

resolution for output maps. Potential gaps on the output maps at high latitudes are 

filled using monthly VIIRS GVF climatology.

Summary:

1) The NOAA-20 VIIRS GVF system produces a global 4-km resolution GVF map and a regional 1-km GVF map 

once a day

2) NOAA-20 GVF time series showed similar seasonal variation as the ground measured greenness index (GCC) 

3) VIIRS GVF accuracy, precision and uncertainty were lower than the specifications, indicating that the global 

and regional VIIRS GVF products meet the design requirements

4) Operational NOAA-20 VIIRS GVF product has been available for the public at NOAA comprehensive large 

array-data stewardship system (CLASS) since 6/4/2019 

(https://www.bou.class.noaa.gov/saa/products/welcome)

20190524-20190530

NOAA-20 and S-NPP GVF comparison

Validation

Validation sites

Specifications VIIRS GVF

Measurement accuracy

Global 0.12 0.058

Regional 0.12 0.067

Measurement precision

Global 0.15 0.063

Regional 0.15 0.076

Measurement uncertainty

Global 0.17 0.086

Regional 0.17 0.101

Validation of the NOAA-20 4-km GVF

 Reference GVF data derived from 107 Landsat 

ETM+ images distributed globally

 Period: 1/3/2019 - 2/28/2019 (winter at north 

hemisphere)

 Decision-tree classification method used to 

classify the 30-m Landsat pixels into 3 vegetation 

levels (GVF=0, 0.5 or 1)

 Landsat classified images reprojected to the 

VIIRS GVF projection and 30-m GVF are 

aggregated to 4km GVF

North America AustraliaRegional 1-km GVF product

20190524-20190530

20190809-20190815

The PhenoCam Network provides automated, near-surface RGB images of canopy phenology across the 

North America.

(GCC) was calculated based on the daily mean R, G, B values for each site (Klosterman et al 2014; 

Richardson et al 2009). 

GCC=G/(R+G+B)

NOAA-20 GVF time series showed similar seasonal variation 

as the ground measured greenness index (GCC) 

https://www.bou.class.noaa.gov/saa/products/search?sub_id=0&datatype_family=JPSS_NGRN&submit.x=17&submit.y=7
http://www.nsof.class.noaa.gov/saa/products/welcome
http://phenocam.unh.edu/


Near Rear Time One-kilometer  SMAP Soil Moisture Data Product for Potential Use in National Water Model 

Jifu Yin1, 2 (jifu.yin@noaa.gov), Xiwu Zhan2, Yanjuan Guo1,2, Nai-Yu Wang1, 2, Ralph R. Ferraro2  

1. CISESS/ESSIC, UMD, College Park, MD. 2. NOAA NESDIS-STAR, College Park, MD.  

Motivation: NOAA has undertaken a major effort to improve its hydrological forecast services through the development of a new National Water Model (NWM) at the 

National Water Center. Because of the uncertainties in model physics and input parameters, and potential errors in forcing data, the soil moisture (SM) estimates may be 

erroneous, resulting uncertainties in the output of the NWM. These type of model errors can be compensated for by assimilating fine resolution satellite SM observations. For 

operational users, the downscaling approach should be feasible for operational implementation, requiring limited ancillary information and primarily depending on readily 

available satellite observations. Thus, a near-real-time 1 km SMAP SM data product is proposed to be routinely generated at the NOAA-NESDIS using remotely sensed land 

surface temperature (LST) and enhanced vegetation index (EVI) observations. 

Conclusions:  

(1) The advantages of the downscaling technique include simplicity, feasibility of operational implementation, pure reliance on remote sensing measurements, 

computationally fast and limited ancillary information requirements. 

(2) With respect to the quality controlled SCAN observations, the UCLA_DTR method showed the most successful performance out of the 9 downscaling schemes. As 

expected, the accuracy level is significantly improved with the advance of the fine scale satellite SM measurements. 

(3) Compared to the NASA 3 km SMAP/Sentinel product, the accuracy level was significantly improved. The downscaled 1 km SMAP SM data product also provides larger 

data availability, although the VIIRS observations used as ancillary information can be affected by cloud coverage. 

(4) Building on the results shown in this paper, a near-real-time 1 km SMAP SM data product is proposed to be developed at NOAA-NESDIS. 

Fig. 1 Nine selected downscaling schemes for developing an optimal downscaling strategy.  

Metrics 
SMAP 

(25 km) 

VTCI (1 km) UCLA (1 km) TRIA (1 km) 

DAY NIGHT DTR DAY NIGHT DTR DAY NIGHT DTR 

R 0.642 0.582 0.584 0.596 0.640 0.632 0.642 0.576 0.574 0.582 

RMSE 0.089 0.091 0.092 0.086 0.084 0.086 0.082 0.097 0.097 0.091 

ubRMSE  0.054 0.060 0.059 0.054 0.051 0.053 0.049 0.062 0.063 0.060 

Tab. 1 Summary of the statistical comparison results when averaged across the CONUS, 

including correlation coefficient (r), RMSE (m3/m3), and ubRMSE (m3/m3) over the 1 May 

2017- 30 April 2019 period. Italic bold indicates the optimal metric. 

Fig. 3 Process flow of producing a NRT 1 km downscaled SMAP soil 

moisture map using the UCLA_DTR method.  

Fig. 2 With respect to the quality controlled SCAN SM observations, left column shows the 

metrics for SMAP/Sentinel 3 km SM product (SPL2SMAP), while the right column shows 

metric differences between SPL2SMAP and 3 km UCLA_DTRup during the 1 May 2017- 30 

April 2019 period. Top, middle and bottom rows are for correlation coefficients (r), RMSE 

(m3/m3) and ubRMSE (m3/m3), respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Longitude-averaged data availability over the CONUS domain. 

Fig. 5 Sample maps for (a) 25 

km SMAP and (b) the 

downloaded 1 km SMAP SM 

retrievals over the sub-region 

from -118˚E, 37.5˚N to 115˚E, 

39˚N on August 3, 2018. 



The Status of the GOES-R Land Surface Temperature Product
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Introduction
Land Surface Temperature (LST) is one of the key variables in the weather and climate system controlling surface heat and water exchange at 
the land atmosphere interface. Satellite measured LST is mostly based on thermal infrared band observations which theoretically gives the 
temperature at some nominal skin depth of the surface. Knowledge of the LST gives critical information on temporal and spatial variations of 
the surface equilibrium state and is of fundamental importance to many aspects of geosciences, e.g., the net radiation budget at the Earth 
surface and to monitoring the state of crops and vegetation, as well as an important indicator of both the greenhouse effect and the energy 
flux between the atmosphere and the land.

The first Geostationary Operational Environmental Satellite-R Series (GOES-R) satellite, the GOES-16, was launched in November 2016, joined 
by its successor, the GOES-17, in March 2018. The Advanced Baseline Imager (ABI) onboard both platforms has 16 spectral bands (compared to 
five from previous GOES satellite imagers), including the Split-window (SW) channels used for LST retrieval. The LST product, as one of the 
baseline ABI products, has been operationally produced since January 2017. The GOES-16 LST was validated with the in-situ surface 
temperature estimates from the SURFRAD network and results show that the bias and precision required by the mission were met for all three 
LST products (CONUS, FD, and MESO). As a result, the GOES-16 LST reached its Provisional maturity in March 2018. Its GOES-17 counterpart 
during “cool” period reached the Provisional maturity in June 2019. This presentation will provide detailed information about the product’s 
validation and evaluation results, their current status, and future direction.
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CONUS T C 2 km 1 km 213 – 330 2.5 2.3 60 min 3236 sec LZA <70

Full Disk T FD 10 km 5 km 213 – 330 2.5 2.3 60 min 806 sec LZA <70

Mesoscale T M 2 km 1 km 213 – 330 2.5 2.3 60 min 159 sec LZA <70

1 T=target, G=goal 2 C=CONUS, FD=full disk, H=hemisphere, M=mesoscale
3The measurement accuracy 2.5K is conditional with 1) known emissivity, 2) known atmospheric 

correction and 3) 80% channel correction; 5 K otherwise. 4 VAGL=Vender Allocated Ground Latency.
5 LZA=local zenith angle.

GOES-R ABI Land Surface Temperature Product

Advanced Baseline Imager Scan Modes

GOES-R mission requirements for LST

GOES-R ABI LST Product

Data Access: https://www.avl.class.noaa.gov/saa/products/search?sub_id=0&datatype_family=GRABIPRD

GOES-16: May 24., 2017 – Present; GOES-17 LST: August 27, 2018 – Present

GOES-R LST ATBD: https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-

R_LST_v2.5_Jul2012.pdf

GOES-R PUG: https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf

Long-Term Monitoring Web: https://www.star.nesdis.noaa.gov/smcd/emb/land/index.php

Long-Term Monitoring FTP: ftp://ftp.star.nesdis.noaa.gov/pub/smcd/emb/pyu/LTM/single/

GOES-R Long-Term Monitoring Output Examples

Validation Results
GOES-17 CONUS LST Validation Results

GOES-R Coverage

GOES-16 CONUS LST Validation Results

Application Examples

Hourly Output Frequency

• GOES-16 LST and GOES-17 LST (during “cool” period only) reached provisional maturity in March 2018 and June 2019,
respectively. All products, FD, CONUS, and MESOs, meet the mission requirement based on the validation results.

• An enterprise LST retrieval algorithm applicable to multiple sensors has been developed and delivered to ASSISTT. The
evaluation results indicate it outperforms the current baseline algorithm.

• To address the loop heat pipe overheating issue, an mitigation algorithm has been developed to improve the product quality
and increase its usable period during “warm” period. The preliminary evaluation results are satisfactory.

• The Enterprise/Mitigation package are expected to be implemented in the ground system in August 2020.
• The product has been widely used in different applications

There are three scan modes for the 
ABI:

 Mode 3: Full disk images every 15 
minutes + 5 min CONUS images + 
two 1-min mesoscale images

 Mode 4: Continuous Full disk every 5 
minutes

 Mode 6 (Default): Full disk images 
every 10 minutes + 5 min CONUS 
images + two 1-min mesoscale 
images

ABI scans about 5 times faster than the 
previous GOES imager

CONUS

Mesoscale

“Franklin”

Full Disk

1

Enterprise Algorithm Evaluation with GOES-17 Data Mitigation Algorithm Evaluation with GOES-17 Data

• GOES-16 at GOES-EAST

• GOES-17 at GOES-WEST

• Two platforms overlap at the CONUS

• Hourly output frequency revealed more detailed temporal evolution compared to sensors 

onboard polar orbiting satellites, e.g., JPSS and SNPP 

Launch

Beta

Provisi
onal

Delta

Full

GOES-16 GOES-17

Nov. 2016 Mar. 2017

May 2017 Sep. 2018

Mar. 2018 Jun. 2019

TBD TBD

Nov. 2020

Enterpris
e

Jun. 2020 Jun. 2020

Product Timeline

Geostationary satellites’ scan frequency is higher than

that of polar-orbit satellites. A comparison to LSTs

combined from both SNPP and NOAA-20, the

GOES-16 LST is able to more accurately characterize

the LST diurnal variation.

• GOES-R LST is used in numerical weather forecast model output

verification.

• GOES Evapotranspiration and Drought System

• Urban air surface temperature model

Summary

Scatter and difference plots for ground station and satellite-predicted air

temperature for three individual stations in Dallas, TX (top), Elizabeth,

NJ (middle),and Sacramento, CA (bottom). Each station is at least 70%

urban. The scatter shows the adherence of the prediction algorithm to the

true ground station temperatures. The distribution shows the distribution

of the scatter.

ET estimates comparis on between operational GOES-13/15 based 8 km product

(a: over North America domain and b: over CONUS domain) and upgraded

GOES-16 based 2 km product (c), with regional comparison over Oklahoma at

8km (d) and 2km (e). Monthly composite of July 2017 (mm/day).

https://www.avl.class.noaa.gov/saa/products/search?sub_id=0&datatype_family=GRABIPRD
https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_LST_v2.5_Jul2012.pdf
https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf
https://www.star.nesdis.noaa.gov/smcd/emb/land/index.php
ftp://ftp.star.nesdis.noaa.gov/pub/smcd/emb/pyu/LTM/single/
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Introduction

The longest Normalized Difference Vegetation Index (NDVI) time

series, produced from the Advanced Very High Resolution

Radiometer (AVHRR) has ended in 2017, and there will be no

continuation of AVHRR on-board afternoon satellites. NDVI from

other sensors, especially the operational Visible Infrared Imaging

Radiometer Suite (VIIRS), is imperative to elongate this global

data set while maintaining the continuity and consistency. NDVI

could be de-composited into two components: the multi-year

climatology and vegetation condition index (VCI), with the former

contains climate information and a majority of sensor noise, and

the latter contains weather information and residual sensor noise.

With the assumption that VCI from different sensors are similar,

we re-composited the cross-sensor/cross-production NDVI with

original VCI and the cross-sensor/cross-production climatology,

and compared various cross-converted datasets with the three base

NDVI datasets: two NDVI productions derived from AVHRR

observation and another from VIIRS observation. As a result, the

re-composited NDVI agrees well with the original NDVI spatially

and temporally, with an accuracy of 0.02 NDVI unit at a global

scale.

Sensor Specific Differences

Original Base NDVI Time Series 

Histogram of Three Base Datasets

Difference Map and Histogram

Converted vs. Original NDVI Time Series

STAR 2020 JPSS/GOES-R 
PGRR Summit Tue # 11

NDVI time series of 6 sites from three base datasets: GIMMS

NDVI3g (1981-2015) vs. AVHRR VHP (VHP-SMN, 1981-

2017) vs. VIIRS (VIIRS-SMN, 2013-2018). The 6 sites are (a)

East Sahara in Libya, (b) Saratov in Russia, (c) Illinois in USA,

(d) South Queensland in Australia, (e) Maine in USA, and (f)

Amazon in Brazil.

After converting AVHRR VHP and VIIRS NDVI to

GIMMS NDVI3g, we compared their time series with the

original NDVI3g. Note if converting to other two datasets,

the comparison results are similar.

Climatology of 6 sites from the three base datasets, GIMMS

NDVI3g vs. AVHRR VHP vs. VIIRS VHP. The 6 sites are

the same as the previous figure.

Methodology

NDVI could be de-composited into its climatology and VCI. The

climatology stores Ecosystem Component and major part of

Observing Noise Component, while the VCI contains Weather

Component and some residual of Observing Noise Component.

Similarly, NDVI from different sensor and/or different production

suite could be de-composited into its distinctive climatology and

VCI. With the assumption that the discrepancy of VCI from

different sensors/productions could be neglected, and given

corresponding sets of climatology, we can back-project, or re-

composite VCI to sensor/production-specific NDVI.

(a) Relative spectral response function of VIIRS (S-NPP),

AVHRR-2 (NOAA-11) and AVHRR-3 (NOAA-19) red and

NIR bands. The transmittance spectra of some selected gases

are also plotted; (b) Local equatorial crossing time (LECT) of

polar satellites which carry either the sensor VIIRS (S-NPP and

NOAA-20) or AVHRR (the rest). In the figure, NPP is short for

Suomi NPOESS Preparatory Project (S-NPP), rest N is short

for National Oceanic and Atmospheric Administration

(NOAA), and M is short for MetOP.
After converting NDVI from VIIRS to AVHRR VHP, we

mapped its difference comparing to original AVHRR NDVI,

and also plot the difference histogram.

NDVI de-compositing and re-compositing through VCI.



Global Surface Type Products from VIIRS
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VIIRS surface 
reflectance data 

(swath)

Global composites 
(daily) 

Global composites 
(32-day)

Gridded surface 
reflectance data

Annual metrics 
(global)

Decision tree

Support vector 
machines (SVM)

Training sample

VIIRS ST IP 
product

Validation data

Other surface 
type products
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Percent noisy training (%)

Ac
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Reference 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Total
(%)

User’s accuracy 
(%)

Producer’s 
accuracy (%)

Map
1 2.04 0.01 0.06 0.05 0.29 0.01 0.01 0.23 0.04 0.07 0.02 0.01 0 0.01 0 0 0.01 2.86 71.3±2.9 72.6±3.4

2 0 8.46 0 0.09 0.05 0 0 0.4 0.08 0.02 0 0.06 0 0.12 0 0 0 9.28 91.2±1.2 92.6±1.1

3 0.05 0 1.08 0 0.13 0 0.01 0.09 0 0.02 0.02 0 0 0 0 0 0 1.41 76.7±3.9 68.7±4.7

4 0 0.01 0.01 0.95 0.05 0 0 0.09 0.03 0 0 0 0 0.02 0 0 0 1.14 82.8±2.8 42.8±3.4

5 0.2 0.17 0.21 0.64 3.52 0.03 0.02 0.59 0.15 0.02 0.03 0 0.02 0.33 0 0 0.02 5.95 59.2±2.6 76.2±2.6

6 0 0 0 0 0 0.05 0 0 0 0.01 0 0 0 0 0 0 0 0.07 70.0±6.0 3.6±0.8

7 0.22 0.02 0.07 0.05 0.19 0.48 11.64 0.51 0.36 1.24 0.17 0.36 0.02 0.15 0 0.48 0.02 16.00 72.7±1.7 83.9±1.8

8 0.26 0.17 0.06 0.28 0.17 0.09 0.3 4.84 0.58 0.11 0.07 0.09 0.01 0.44 0 0 0.02 7.50 64.6±1.9 57.5±2.2

9 0 0.16 0.03 0.05 0.05 0.46 0.24 1.02 5.25 0.13 0.03 0.22 0.05 0.38 0 0 0 8.08 65.0±2.8 71.9±2.4

10 0.02 0 0.04 0.02 0.06 0.23 0.79 0.19 0.21 6.37 0 0.48 0.02 0.21 0 0.23 0.01 8.90 71.5±1.7 72.1±2.1

11 0.01 0.02 0 0 0.01 0.01 0.06 0.05 0.06 0.01 0.48 0.01 0 0 0 0 0 0.73 65.0±6.2 57.3±7.5

12 0.01 0.01 0 0 0.04 0.02 0.07 0.05 0.16 0.46 0.01 6.97 0.08 0.55 0 0 0.02 8.44 82.6±1.2 79.7±1.7

13 0 0 0 0 0 0 0.01 0.01 0 0 0 0.04 0.35 0.01 0 0 0 0.42 81.7±3.6 58.9±6.7

14 0 0.1 0.02 0.06 0.05 0.01 0.06 0.34 0.39 0.18 0 0.41 0.03 2.7 0 0.01 0 4.35 62.0±2.1 53.9±2.7

15 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 10.19 0 0 10.36 98.3±1.7 100.0±0.0

16 0 0 0 0 0 0 0.49 0 0 0.18 0 0.09 0 0.09 0 12.53 0 13.37 93.7±1.4 94.5±0.9

17 0 0 0 0 0 0 0 0 0 0.02 0 0 0 0 0 0 1.11 1.13 98.3±1.7 91.3±3.2
Total 2.81 9.13 1.57 2.21 4.62 1.4 13.87 8.42 7.31 8.83 0.83 8.75 0.59 5.01 10.19 13.26 1.21 100

Error matrix of estimated area proportions (in percentage) for the 2014 product. Overall 
accuracy is 78.5 ± 0.6%.

Summary
VIIRS observations from S-NPP have been used to generate

global surface type maps on an annual basis. The primary
product is an Annual Surface Type (AST) map derived using VIIRS
observations acquired within one full calendar year. This
product uses 17 IGBP classes to characterize the Earth's surface
at approximately 1-km spatial resolution. To facilitate product
use in specific applications, two additional maps are produced
by reclassifying the IGBP map using the classification schemes
required by those applications.

The overall accuracies of the IGBP classifications for the years
between 2012 and 2018 varied between 76% and 79%,
exceeding the JPSS L1RD requirement of 70%. The 2019
product is being developed with a planned release date in late
summer/early fall. Future products will be produced by
incorporating VIIRS data from NOAA-20 and VIIRS-like
observations that will be available when the planned EUMETSAT
Metop Second Generation (Metop-SG) satellite is lanuched.
Togehter, these obsevations will greatly improve the feasibility
to monitor sub-annual dynamics important for weather/climate
processes, including rapid changes in surface inundation,
snow/ice cover, and vegetation conditions. The VIIRS Surface
Type team will explore and demonstrate capabilities for
monitoring such changes.

Zhang, R., Huang, C., Zhan, X., Dai, Q., & Song, K. (2016). Development and validation of the global surface type data product from S-NPP VIIRS.
Remote Sensing Letters, 7, 51-60.

Zhang, R., Huang, C., Zhan, X., Jin, H., & Song, X.-P. (2017). Development of S-NPP VIIRS global surface type classification map using support vector
machines. International Journal of Digital Earth, 11, 212-232.

Bian, J., Li, A., Huang, C., Zhang, R., & Zhan, X. (2018). A self-adaptive approach for producing clear-sky composites from VIIRS surface reflectance
datasets. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 189-201, https://doi.org/10.1016/j.isprsjprs.2018.07.009.

Methods

Results

Future Directions

Primary Product Application Specific Products

Overall Approach

Improved Image Composting Method

Advanced Classification Algorithm

Major Characteristics of Primary Product
• 17 IGBP Surface Types
• 1 km spatial resolution
• Mapped annually
• Available in both Sinosoidal projection and Lat/Long

Reference Data

Accuracy Assessment

Large quantities of reference samples have been derived based on
Google Earth and other available high resolution imagery
• Well distributed across the globe
• Highly reliable class labeling
• Training samples: > tens of thousands, add as needed
• Validation samples: ~6000 selected following a probability based

sampling design.

Accuracy estimates are derived following well-established accuracy assessment 
protocol (Olofsson et al. 2014)
• Overall accuracies varied between 76% and 79%
• Meet the 70% JPSS L1RD requirement for the AST product
• Better than accuracies reported for MODIS land cover products

Product Dissemination

We will focus in the following areas in our future 
research:
• Continue to produce the VIIRS Annual Surface 

Type (AST) product
• Incorporate VIIRS continuity and VIIRS-like 

observations
• VIIRS continuity: NOAA-20, future JPSS 

missions
• VIIRS-like observations: METImage onboard 

METOP-SG, AM mission by Europe 
• Explore and demonstrate capabilities for 

monitoring sub-annual surface type dynamics
• Focus on changes important for 

weather/climate processes:
• Snow/ice, surface inundation, vegetation

• Leverage existing/planned products/ 
capabilities

Surface Type map with classes needed to support NCEP modeling

Surface Type map with classes needed to support LAI/FPAR retrieval

Current and planned VIIRS missions will allow continuity of the AST product

Self-Adaptive Compositing (SA-Comp) method produces clear view composites for 
both vegetated and non-vegetated (water, snow/ice, desert, etc.) surfaces

The support vector machines (SVM) method is designed to find optimal boundaries 
between classes, and hence is more resistant to noises and typically produces more 

accurate results than other classification algorithms

Near Identical AST productsNear Identical Images

MetImage-SG has most of the VIIRS bands (from Cao 2019)

Flooding often results in large changes in surface inundation. The VIIRS
Floodwater Fraction Map Products could be used to provide near daily
update of surface inundation

Surface type maps updated for daily snow cove changer by
integrating snow cover maps generated through the
Interactive Multisensor Snow and Ice Mapping System (IMS)

Prototype of sub-annual update of vegetation changes due to fire 

Publications
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		20		0.7380831609		0.7461258765		0.623655716		0.6460847088		0.5830069764		0.5716687971		0.5995244576		0.5149589756		0.521970462		0.8982000303		0.756434965		0.9001164934		0.8448673854		0.7586525673		0.7975338271

		25		0.6199262085		0.6575304771		0.5947533579		0.5747053835		0.5727459161		0.4552931693		0.5038403685		0.5629012205		0.3385652586		0.9165968033		0.8225788105		0.9065381321		0.7664109464		0.634853588		0.75205645

		30		0.584223838		0.650125108		0.5342777033		0.548076782		0.518842759		0.4483602577		0.5533554653		0.4057847608		0.4174391711		0.9032974029		0.7750955418		0.9081128101		0.6948017162		0.5632356122		0.5721295053

		35		0.557254809		0.3178505616		0.6066094834		0.4700990354		0.4154748995		0.3834519259		0.3181101839		0.3999870721		0.2059256706		0.8477015959		0.6137002398		0.837712421		0.5353376013		0.3068048001		0.4537652476

		40		0.4097222098		0.3944342189		0.253746069		0.3747403391		0.3657960564		0.2619406256		0.3079979503		0.3875531876		0.2813309189		0.4789843343		0.2004855542		0.5369687966		0.5229812672		0.239413305		0.4104951687

		45		0.3244113129		0.2647230778		0.2313092789		0.3164148482		0.3228205764		0.2509556565		0.2691562913		0.3974480781		0.2109716304		0.3467588875		0.4219605107		0.2698967229		0.0802462783		0.2503297876		0.1411720694

		50		0.3713021474		0.2056567097		0.2643446665		0.3719351241		0.3692233914		0.271919084		0.5069161178		0.4462620526		0.3621935271		0.1739040904		0.2591947803		0.1592320628		0.248063036		0.9850892331		0.2492238694





Overall

		Error Percentage in Training		MLC		DT		NN		SVM		KP

		0		0.9043532291		0.8978069816		0.8737802693		0.9106649181		0.924459925

		5		0.8349957957		0.8487012211		0.7784007214		0.9012607449		0.9138472523

		10		0.7730713856		0.7798872723		0.7035388164		0.918954111		0.8979334337

		15		0.7421245284		0.7050199979		0.610402832		0.8894582765		0.8753379664

		20		0.7380831609		0.6460847088		0.5995244576		0.8982000303		0.8448673854

		25		0.6199262085		0.5747053835		0.5038403685		0.9165968033		0.7664109464

		30		0.584223838		0.548076782		0.5533554653		0.9032974029		0.6948017162

		35		0.557254809		0.4700990354		0.3181101839		0.8477015959		0.5353376013

		40		0.4097222098		0.3747403391		0.3079979503		0.4789843343		0.5229812672

		45		0.3244113129		0.3164148482		0.2691562913		0.3467588875		0.0802462783

		50		0.3713021474		0.3719351241		0.5069161178		0.1739040904		0.248063036
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CONCLUSIONS

OBSERVATIONSINTRODUCTION

Li Fang1,2,*, Xiwu Zhan2, Mitchell A.Schull1,2, Satya Kalluri2, Istvan Laszlo2, Peng Yu1,2, 
Corinne Carter1,2, Christopher Hain3, Martha Anderson4

1 Cooperative Institute for Satellite Earth System Studies (CISESS)/Earth System 
Science Interdisciplinary Center, University of Maryland
2 NOAA‐NESDIS Center for Satellite Applications and Research

An Evapotranspiration Data Product at 2km resolution 
from NOAA GOES‐16

PRODUCT

RESULTS

 The GET‐D system has been upgraded
successfully to generate ET at much
improved spatial resolution of 2km over
CONUS using GOES‐16 observations

 The comparison proves ET estimates
from the upgraded GET‐D system to be
very consistent with the current
operational products

 The spatial correlation between the two
products reaches 0.946 averaged over
CONUS domain for the studying period

 Upgraded GET‐D is validated against
MEAD in situ observations

 Accuracy of the new GET‐D ET product is
satisfactory with the bias of 0.588
mm/day and the correlation of 0.914
averaged from three Mead sites

Error 
Statistics

Bias RMSE Correlation N

Satellites
GOES‐13 
based

GOES‐16 
based

GOES‐13 
based

GOES‐16 
based

GOES‐13 
based

GOES‐16 
based

MEADsite1 0.555 0.601 1.318 1.215 0.887 0.885 26

MEADsite2 0.561 0.546 1.094 0.906 0.860 0.885 23

MEADsite3 0.754 0.617 1.132 1.023 0.949 0.974 21

Average 0.623 0.588 1.181 1.048 0.899 0.914

Monthly ET (mm day‐1) composites of: (a) the 8km estimates derived from GOES‐13/15 GET‐D 
system, (b) the 8km average aggregated from the 2km product of the upgraded GOES‐16 GET‐D, 

(c) the 2km estimates from GOES‐16 GET‐D, and (d) scatterplot of retrieved ET from the 
upgraded GET‐D compared with current operation

ALEXI MODEL

 GOES Evapotranspiration (ET) and
Drought (GET‐D) has been operationally
generating ET and Evaporative Stress
Index (ESI) data products at 8km
resolution for NCEP NWP model
validation and drought monitoring

 Continuation of GET‐D operation using
the current high‐resolution thermal
observations of the Advanced Baseline
Imagers (ABI) from GOES‐R series is in
high demand

 This study introduces the architecture
of the upgraded GET‐D system, the core
model (Atmosphere‐Land Exchange
Inversion model; ALEXI) and
preliminary validation results of ET
product

Variables Spatial 
Resolution

Unit Format Description

ET 2km mm day‐1 NetCDF, GRIB2, 
PNG Daily ET

ET QC 2km ‐‐ NetCDF, GRIB2 Quality control flag 
for retrieved ET

Fluxes 2km W m‐2 day‐1 NetCDF, GRIB2, 
PNG

Daily short wave 
down, long wave 

down, long wave up 
and net radiation

Flux QC 2km ‐‐ NetCDF, GRIB2 Quality control flag 
for retrieved fluxes

Name
Data 
Source

Resolution
Spatial 
Coverage

Description

GOES thermal 
observations

GOES‐R 2km
Full Disk

/
CONS

Primary option: Channel 13 of
GOES‐16 and GOES‐17 ABI L1b
Radiance product (ABI‐L1b‐
RadF)
Second option: GOES LST
product (OR_ABI‐L2‐LSTC)

Clear Sky Mask GOES‐R 2km Full Disk
GOES‐R Clear Sky Mask
product (OR_ABI‐L2‐ACMF)

Insolation
GSIP

GOES16 inso
0.125°
2km

North America
GSIP L2 real time insolation;
Insolation product from
GOES16

Vegetation 
Index

VIIRS 0.036° Global NESDIS GVF (inverted to LAI)

Air 
temperature

NARR/CFS 0.3°/0.5° NA/Global
Surface and pressure level
profiles

Specific 
humidity

NARR/CFS 0.3°/0.5° NA/Global
Surface and pressure level
profiles

Geopotential 
height

NARR/CFS 0.3°/0.5° NA/Global
Surface and pressure level
profiles

Wind 
speed

NARR/CFS 0.3°/0.5° NA/Global Surface

Downwelling 
longwave 
radiation

NARR/CFS 0.3°/0.5° NA/Global Surface

Solar zenith GOES‐R 2km Full Disk GOES‐R solar zenith angles
View zenith GOES‐R 2km Full Disk GOES‐R view zenith angle

Snow Mask IMS 24 km
Northern 

Hemisphere

NOAA IMS Daily Northern
Hemisphere Snow and Ice
Analysis

What is 
Evapotranspiration? 

Fang, L.; Zhan, X.; Schull, M.; Kalluri, S.; Laszlo, I.;
Yu, P.; Carter, C.; Hain, C.; Anderson, M.
Evapotranspiration Data Product from NESDIS
GET‐D System Upgraded for GOES‐16 ABI
Observations. Remote Sens. 2019, 11, 2639.

 Atmosphere‐Land Exchange Inversion
(ALEXI) model exploits the mid‐morning
rise in LST from GOES to deduce the
land surface fluxes, including
evapotranspiration

 Implementation of the two‐source
energy balance (TSEB) model which
balances components of energy
budgets for the soil and canopy
components separately

3 NASA Marshall Space Flight Center
4 USDA Agricultural Research Service
* Li Fang lfang1@umd.edu
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NOAA’s National Environmental Satellite, Data, and 

Information Service (NESDIS) generates operational 

geostationary Level-2P (L2P) Sea Surface 

Temperature (SST) products in GHRSST GDS 2.0 

format GOES-16 East and GOES-15 West, Meteosat 

Second Generation (MSG) 11 and 8, and Himawari-8). 

SST product accuracy for the heritage geostationary 

sensors was improved with the implementation of a 

physical retrieval algorithm based on a Modified Total 

Least Squares algorithm (Koner et al., 2015).  

Additionally, the operational geostationary SST 

products are then blended with the polar operational 

SSTs to produce daily global, 5-km resolution SST 

analyses in GHRSST L4 format (Maturi et al., 2017).

The analysis product validates to 0.3 K RMS against 

independent ARGO data (see 

https://www.star.nesdis.noaa.gov/sod/sst/squam/analy

sis/l4/?l4sst=CMC&ref=IQ2_AG&aggtime2=monthly&s

tats=SD#timeseries_dyn).  The physically retrieved 

SST L2P inputs from the heritage geostationary 

imagers are an important component of the SST 

Analysis products. The temporal and increased data 

coverage of the geostationary satellites generated by a 

high quality SST with Standard Deviation of 0.3-.5 

makes this a uniquely powerful product for many 

ocean applications requiring mesoscale temperature 

information.

Maturi E, A Harris, J Mittaz, J Sapper, G Wick, X Zhu, P 

Dash, P Koner, A New High Resolution Sea Surface 

Temperature Blended Analysis, Bull. Am. Meteorol. Soc., 

98, 1015-1026, 2017

BLENDED SST ANALYSISBACKGROUND

NOAA’s New High-Resolution Sea Surface Temperature Blended Analysis
Eileen Maturi1, Andy Harris2, Jonathan Mittaz3, Gary Wick4, John Sapper1

1: NOAA/NESDIS, College Park, MD, 2: Univ of Maryland, College Park, MD, 3: Univ of Reading, UK, 4: NOAA/OAR/ESRL   

JPSS/GOES-R PGRR Summit   Contact: Eileen.Maturi@noaa.gov   Phone:  +1 301-683-3347

SUMMARY

These 5-km blended SST analyses are produced daily from 24

hours of polar and geostationary sea surface temperature satellite

retrievals (NPP, Metop-B, GOES-E/W, Himawari-9, and Meteosat-

11). Meteosat-8 is being added over the Indian Ocean.

 Day & Night  Night-only

 Diurnally adjusted Day & NightOPERATIONAL SST RETRIEVAL

.

GEOSTATIONARY SST COVERAGE

The image is a 24 hour merged composite of the Operational geostationary 

SST products generated by NOAA (GOES-W (15), GOES-E (16), Meteosat-11, 

Meteosat-8, Himawari-9).  N.B. The addition of Meteosat-8 has improved 

coverage over the Indian Ocean – important for NOAA Coral Reef Watch

EFFECT OF DIURNAL ADJUSTMENT

GOES-W          GOES-E       Met-11       Met-8 Himawari-9

.

Current geostationary SST retrieval:  MTLS physical retrieval + 

Bayesian cloud detection for clear sky (Koner et al., 2015, 

Merchant et al., 2005)

History of GEO SST retrieval algorithms at NOAA/NESDIS 

Geo-Polar Blending: A multi-scale OI with data-adaptive correlation 

length scale, giving a ~5-km global L4 product (Maturi et al., 2017)

• Analysis is performed at 3 different scales

• Final result is interpolated from these analyses based on data 

density

• Preserves fine-scale features without introducing excessive 

noise

Diurnal warming amplitude calculated using turbulence model, 

including a parameterization for Stokes’ drift

VIIRS

Effect of diurnal adjustment on VIIRS



Water Quality and Bio-optical Properties Measured from 
the Geostationary and Polar-orbiting Satellite Sensors 

in the Northwestern Pacific Region
SeungHyun Son1,2, Menghua Wang1, & Lide Jiang1,2 

1NOAA/NESDIS Center for Satellite Applications and Research, College Park, Maryland, USA   
2CIRA, Colorado State University, Fort Collins, Colorado, USA

INTRODUCTION

DATA & METHODS

 The Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing 
system has been used for VIIRS, OLCI, and GOCI data processing. 
 Various parameters and lookup tables are generated, and a new atmospheric 

correction algorithm has been developed and implemented in MSL12 for 
GOCI data processing in the region (Wang et al., 2012, 2013).
 GOCI and OLCI Level-1B data were processed to derive Level-2 ocean 

color products using the new atmospheric correction algorithm (Jiang & 
Wang, 2014).
 VIIRS ocean color Environmental Data Records (EDR or Level-2 data) 

were processed from the VIIRS science quality Sensor Data Records (SDR 
or Level-1B data) routinely using MSL12 with the NIR-SWIR combined 
atmospheric correction algorithm (Wang & Shi, 2007).

The first geostationary ocean color satellite (GOCI) has the unique capability with hourly measurements 
during daytime to provide short-/long-term environmental monitoring in the marine ecosystem over the 
western Pacific region. In this presentation, we show results of GOCI-derived ocean color products from 
2012 to 2019 using the Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system to 
characterize diurnal, seasonal, and interannual variations in water property. In addition, water quality and bio-
optical products from the polar-orbiting ocean color satellite sensors, e.g., the Visible Infrared Imaging 
Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) and the Ocean and 
Land Colour Instrument (OLCI) on the Sentinel-3A, derived using the MSL12 are compared with those from 
GOCI. Comparison results with the in-situ measurements from the two AERONET-OC sites located in the 
Yellow Sea show that over open oceans ocean color products are quite accurate and highly stable, and 
reasonable water property data can be derived over turbid coastal and inland waters. Furthermore, we show 
that GOCI measurements provide important diurnal information, while the polar-orbiting satellites provide 
large scale spatial coverages. Thus, measurements from the geo and polar-orbiting satellites are 
complementary to provide more complete picture/information of water optical, biological, and 
biogeochemical variations over the open ocean and coastal/inland waters. 

GOCI, VIIRS, and OLCI Climatology Images

GOCI-, VIIRS-, and OLCI-derived Chl-a Seasonal Images

Fig. 6. Time series of GOCI-, 
VIIRS-, & OLCI-derived mean 
monthly ocean color products in 
highly turbid waters (Bohai Sea, left 
column) and the clear open ocean 
water (off coasts, right column).

Fig. 5. Climatology 
monthly images of GOCI-
& VIIRS- (Jan. 2012–Dec. 
2019) and OLCI-derived 
(May 2016–Dec. 2019) 
Chl-a. GOCI images are at 
the local noon.

Acknowledgments: The GOCI Level-1B data study were provided by Korea Institute of Ocean Science & Technology (KIOST) and in situ data were obtained 
from the NASA AERONET-OC sites. This study was supported by the NOAA Product Development, Readiness, and Application (PDRA)/Ocean Remote Sensing (ORS) 
Program funding and JPSS funding.

The GOCI ocean color products for the GOCI coverage region have been derived using an iterative NIR-
water reflectance corrected atmospheric correction algorithm (i.e., the BMW algorithm from Jiang and 
Wang (2014)). Time series of the monthly composite images were produced for the entire GOCI region.
VIIRS and OLCI ocean color products were also generated using MSL12 with the NIR-SWIR combined 

and NIR atmospheric correction algorithms, respectively. The VIIRS and OLCI ocean color data over the 
entire GOCI coverage region were compared with the GOCI ocean color data.
Matchup results show that GOCI ocean color data are reasonably well correlated to the in situ optical 

measurements in the Korean coastal waters. 
In general, the temporal and spatial patterns of the GOCI-derived ocean color products are comparable to 

those from VIIRS and OLCI although there are still some differences. More efforts are required to 
improve the VIIRS, OLCI, and GOCI ocean color data quality over highly turbid coastal/inland waters.

SUMMARY

Reference:
Jiang, L. and M. Wang (2014), Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing, Appl. Opt., 52, 

6757-6770.
Wang, M. and W. Shi (2007), The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express, 15, 

15722-15733.
Wang, M., W. Shi and L. Jiang (2012), Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid 

western Pacific region. Opt. Express, 20(2), 741-753.
Wang, M., J. Ahn, J. Jiang, W. Shi, S. Son, Y. Park, and J. Ryu (2013), Ocean color products from the Korean Geostationary Ocean Color Imager 

(GOCI). Opt. Express, 21(3), 3835-3849.

 GOCI-, VIIRS-, and OLCI-derived ocean color products show the strong interannual variability in both 
highly turbid and clear open ocean waters. 
 The monthly mean values are quite consistent in most of the ocean color products from the three sensors. 

However, there are still some discrepancies in nLw(λ) at blue bands and Chl-a data from GOCI, VIIRS, 
and OLCI data.

Interannual Variation of GOCI-, VIIRS-, and OLCI-derived Products

Performance of GOCI Ocean Color Products

Fig. 1. Study map with two AERONET-
OC sites (A-Ieodo, B-Socheongcho).

Fig. 2. Comparison of GOCI-derived nLw(λ) with in situ measurements.

VIIRS Chl-a VIIRS Kd(490) VIIRS nLw(443) VIIRS nLw(551) VIIRS nLw(671)

Chl-a (mg m-3) 10.0 Kd(490)(m-1)0.02 3.2 nLw(λ) (mW cm-2 µm-1 sr-1)0.0 5.0

Fig. 4. Climatology Chl-a, Kd(490), & nLw(λ) images of GOCI at noon & VIIRS (Jan 2012-Dec 2019), & OLCI (May 2016-Dec 2019).

Fig. 3. nLw(λ) spectra from GOCI & VIIRS 
(Jan. 2012–Dec 2019), & OLCI (May 
2016–Dec 2019) climatology composites in 
the five boxes shown in Fig. 1.

VIIRS Chl-a

GOCI Chl-a GOCI Kd(490) GOCI nLw(443) GOCI nLw(555) GOCI nLw(680)

Jan Apr Jul Oct
GOCI Chl-a

 Overall, the GOCI-derived ocean color images are generally very similar to those from VIIRS and OLCI.
 However, there is still the boundary issue between slots in GOCI data, and significantly high values appear 

in the northern area in the GOCI-derived Chl-a images.

Korea Japan

China

Bohai Sea

Yellow Sea

Yangtz River 

Mouth

Off Shore

 Comparison results show that the GOCI-derived nLw(λ) data are reasonably well corresponding to the in 
situ measurements in the optically complex waters (Fig. 2), which are similar to those with VIIRS data.
 nLw(λ) spectra from GOCI (at noon), VIIRS, and OLCI climatology composites are similar in the five areas 

(Bohai Sea, middle of Yellow Sea, Yangtze river mouth, Japan/East Sea, and off shore waters) (Fig. 3).

0.04

A

B

GOCI Coverage

Study 
area

OLCI Chl-a OLCI Kd(490) OLCI nLw(443) OLCI nLw(560) OLCI nLw(674)

GOCI-, VIIRS-, and OLCI-derived Chl-a images show similar seasonal and spatial distributions over the 
Northwestern Pacific Ocean.
 In general, Chl-a values are high in spring and low in summer in most waters.

Jan Apr Jul Oct

Jan Apr Jul Oct
OLCI Chl-a



Remote sensing of shallow-water bathymetry: 

Leveraging multispectral satellite ocean color observations
Jianwei Wei1, Menghua Wang2, Zhongping Lee3, Henry O. Briceño4, Xiaolong Yu3, Lide Jiang5, Junwei Wang6, Kelly Luis3, Rodrigo Garcia3

Conclusions
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 Depth-specific error statistics for model-estimated water depth

Landsat-8 SNPP Sentinel-3A
Ocean color sensor OLI VIIRS OLCI

Visible bands 443, 482, 561, 655 410, 443, 486, 551, 638, 671 400, 413, 443, 490, 510, 560, 620, 665, 674, 681

Revisit 16 days 1 day 1-3 days

Data access USGS NOAA NOAA

Processing software SeaDAS/L2GEN MSL12 MSL12

Atmospheric correction NIR-SWIR NIR-SWIR NIR

Question and Objective

Ocean color satellites allow for derivation of important biogeochemical

properties for global oceans. Limited to multispectral resolution, however, it

remains difficult to generate geophysical properties, e.g., water depth, over

global shallow waters with the satellite remote sensing reflectance (Rrs(λ)). This

study evaluate a new algorithm for practical application of multispectral ocean

color observations to the retrieval of water depth for optically shallow waters.

 A new algorithm is developed for shallow-water bathymetric estimation for

multispectral satellite ocean color sensors.

 Evaluation shows substantial improvement in the estimated depth product

over 0-30 m.

Performance Evaluation

Method and Algorithm

 Error statistics for model-estimated water depth (0.5-30 m)
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Ocean color community has invested great effort in shallow water remote sensing with

semi-analytical algorithms. An extensively tested algorithm is the so-called

hyperspectral optimization processing exemplar (HOPE) (Lee et al., 1998; 1999). A

shallow-water reflectance model is established as:

Bathymetry from Satellite Images

 Florida Keys

 The Bahamas

 Olowalu Reef (Maui, Hawaii)

Our new algorithm incorporates two independent Rrs(λ) spectra measured at the same

location in the spectral optimization, thus allowing to generate much improved

estimation for water depth with multispectral satellite ocean color observations. The

work-flow is schematically shown in below:

 Semi-analytical approach designed for hyperspectral Rrs(λ) 

 Two-spectrum optimization approach (2-SOA) for multispectral Rrs(λ) 

[P1, G1, X1, B, H] [P2, G2, X2, B, H]mod
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Landsat-8\OLI SNPP/VIIRS Sentinel-3A/OLCI

The algorithm performance varies with the range of water depth under study.

Improved performance is observed for water depths over ~3-20 m in comparison to

the “standard” approach.

Hyperspectral Rrs(λ) data are synthesized to cover a wide range of depths, three

benthic types (coral, seagrass, and sand), and turbidity. These Rrs(λ) data are then

interpolated to represent the measurements for Landsat-8/OLI, SNPP/VIIRS, and

Sentinel-3A/OLCI.

Landsat-8\OLI SNPP\VIIRS Sentinel-3A\OLCI

coral seagrass sand coral seagrass sand coral seagrass sand

MAPE 42% 43% 21% 22% 31% 13% 22% 26% 10%

Standard Bias 14% 13% 7% 6% 18% 2% 5% 14% 3%

RMSE 9.3 9.5 6.0 8.8 9.1 4.6 8.3 8.5 4.1

MAPE 26% 28% 15% 14% 19% 11% 14% 16% 10%

This study Bias 1% 1% 3% 4% 9% 0% 1% 5% 2%

RMSE 8.3 8.7 5.2 7.7 8.2 4.0 7.2 7.8 3.9

MAPE: median absolute percentage error; RMSE: root mean square error.

Error statistics for SNPP/VIIRS bathymetry and Sentinel-3A/OLCI bathymetry: 

MAPE = 9%, Bias = 8%, and RMSE = 0.57 m.

Error statistics for Sentinel-3A/OLCI bathymetry and NOAA CRM model:

MAPE = 16%, Bias = −2.7%, and RMSE = 2 m.

Error statistics for Landsat-8\OLI bathymetry and LiDAR data:

MAPE = 40%, Bias = −17%, and RMSE =  8.4 m.

1st image 2nd image

Cost 
function

Cost 
function

Parameters Range (interval) Levels

P 0.01–0.19 (0.03) 7

G 0.01–0.19 (0.03) 7

X 0.001–0.019 (0.004) 7

H 0.5–29.5 (1.0) 30

η −0.5–2.5 (0.5) 7

Sdg 0.015 1

θa 30° 1

B: coral 0.005, 0.05, 0.1 3

B: seagrass 0.01, 0.035, 0.08 3

B: sand 0.1, 0.25, 0.6 3

Lower 
boundary

Upper 
boundary

Initial value

P1 0.005 0.35 0.072·[Rrs,1(443)/Rrs,1(550]-1.62   

G1 0.001 0.6 0.072·[Rrs,1(443)/Rrs,1(550]-1.62

X1 0.0001 0.08 30·aw(670) ·Rrs,1(670)  

P2 0.005 0.35 0.072·[Rrs,2(443)/Rrs,2(550]-1.62   

G2 0.001 0.6 0.072·[Rrs,2(443)/Rrs,2(550]-1.62

X2 0.0001 0.08 30·aw(670) ·Rrs,2(670)  

B 0.001 0.8 0.5

H 0.1 30.5 10

 The bottom albedo spectra for coral,

seagrass, and sand were derived from

Hochberg et al. (2003).

 2-SOA uses a fixed bottom albedo spectrum

(bright band) (Lee et al., 1999).

 2-SOA used fixed lower and upper

constraints and dynamic initial values.

Bottom albedo spectra

P: phytoplankton light absorption;   G: CDOM light absorption;  X: particle backscattering;  B: bottom albedo;  H: depth

SNPP/VIIRS Sentinel-3A/OLCI

Sentinel-3A/OLCI NOAA Coastal Relief Model

The Bahamas

Great Bahamas Bank
Maui

Olowalu coral reefs

Florida Keys

Florida

Five unknowns of P, G, X, B, and H can be determined by quantifying the difference

between the observed spectrum, 𝑅𝑟𝑠
𝑜𝑏𝑠 λ , and modeled spectrum, 𝑅𝑟𝑠

𝑚𝑜𝑑(λ),

Landsat-8/OLI LiDAR

Acknowledgment:  http://www.soest.hawaii.edu/coasts



Wildfire smoke forecasts using HYSPLIT-based emission inverse modeling system and GOES observations
Tianfeng Chai1,2, Hyun Cheol Kim1,2, Ariel Stein1 , and Shobha Kondragunta3

1. NOAA Air Resources Laboratory, College Park, MD;  
2. Cooperative Institute for Satellite Earth System Studies (CISESS), University of Maryland, College Park, Maryland; 

3. National Environmental Satellite, Data, and Information Service, National Oceanic and Atmospheric Administration , College Park, Maryland

• Wildfire emission inversion system HEIMS-fire  has been built 
based on HYSPLIT model, its TCM, and a cost function;

• A case study using real GOES data has been performed;
• High resolution GOES-16/17 data will be tested;
• More evaluation will be performed using VIIRS AOD and surface 

PM2.5 observations;
• Estimated emissions will be tested in other models, such as CMAQ 

and HRRR-smoke.

Contact information: Tianfeng.Chai@noaa.gov
• RESEARCH  •  AIR RESOURCES LABORATORY  

Motivation
Wildfire smoke forecasts have been challenged by high uncertainty
in fire emission estimates, such as the BlueSky emission used in
the current NOAA smoke forecasts (Fig. 1). We develop an inverse
modeling system, the HYSPLIT-based Emissions Inverse Modeling
System for wildfires (or HEIMS-fire) to estimate wildfire emissions
from the smoke plumes measured by satellite observations.

Methodology
In this top-down approach, the unknown emission terms are
obtained by searching the emissions that would provide the best
model predictions closely matching the observations. The wildfire
emission locations are identified by HMS, the unknown emission
rates and the release heights are left to be determined. The
emission rates may vary significantly with time. Thus, the
unknowns of the inverse problem are the emission rates qikt at
each location i, at different height k and period t. The cost
function F is defined as,

where co
nm is the m-th observed concentration or mass loading at

time period n and ch
nm is the HYSPLIT counterpart. As shown in

Equation (1), a background term is included to measure the
deviation of the emission estimation from its first guess qb

ikt. The
background terms ensures that the problem is well-posed even
when there are not enough observations available in certain
circumstances. The background error variances σ2

ikt measure the
uncertainties of qb

ikt. The observational error variances ε2
nm

represent the uncertainties from both the model and observations
as well as the representative errors. Fother refers to the other
regularization terms that can be included in the cost function. The
optimization problem can be solved using many minimization tools,
such as L-BFGS-B package, to get the final optimal emission
estimates.

HEIMS-fire system
The HEIMS-fire system is shown in Fig. 2. The extensive fires in the
southeastern U.S. region in November 2016 is studied here. (Fig.3).

Figure 1.  Current NOAA HYSPLIT wildfire smoke forecast system and comparison 
between HYSPLIT smoke forecasts (blue) and NESDIS HMS smoke (orange).    

Figure 3  True-color image from MODIS 
(left), MODIS AOD (top right), GOES GASP 
AOD (middle right), and GOES ASDTA AOD 
(bottom right) on Nov. 10, 2016

Figure 4  Four domains for fire source inputs 
in sensitivity tests. Red dots indicate HMS 
detected fire locations in November, 2016.

Figure 2. Schematic diagram of HYSPLIT 
based fire emission inverse modeling 
system.  

NOAA NESDIS HMS smoke and fire detection
Incorporates imagery from NOAA and NASA satellites (GOES-West, 
GOES-East, Terra/Aqua MODIS, AVHRR on NOAA-15/-18/-19)

Provide fire locations, starting time, and durations

USFS’s BlueSky model to estimate emissions 

HYSPLIT 
smoke 
forecasts

As smoke may come from distant 
sources, four domains of fire 
source inputs are considered 
(Fig.4).  Sensitivity tests show that 
only including the domain 1 would 
generate comparable results.  
Using the HEIMS estimated 
emissions, the smoke plume 
predicted match the observation 
pretty well (Fig.5). 

Reconstructed smoke results

Figure 5. GOES observations (left) and  
HYSPLIT smoke counterparts (center).  
Right column shows daytime smoke 
predictions for the entire domain.

Hindcast
Figure 7 demonstrate the simulated fire smoke by operational NOAA
HYSPLIT Smoke Forecast System (SFS) and HEIMS hindcast
results on Nov. 11 and two-day forecasts for Nov. 12 and 13. Both
systems reproduced well the smoke in their general patterns and
intensity, as shown in ASDTA AOD and MODIS true color image.
Note that the SFS assumes 75% of emissions still happen at the
same location the next day, but the HEIMS uses 50% persistence
assumption after sensitivity tests (Fig. 6)

Summary and future work

Figure 7. Observed and forecasted 
smoke on November 11-13. Rows 1-4: 
True color image from MODIS, ASDTA 
smoke, HEIMS smoke hindcast, and 
SFS smoke forecasts (from operation).  

Figure 6. Effect of varying persistent rates 
for 2 forecast days.
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Timeline of Analysis for Burn Scar Severity

Woodbury Fire in Arizona June-July 2019

Towards the Development of Real-time Normalized Burn Ratio (NBR) and delta NBR Imagery from GOES-16/17 and S-NPP
Emily Berndt1, Kristopher White2, Frank LaFontaine3, and Royce Fontenot4

1 NASA Marshall Space Flight Center 2 National Weather Service Huntsville, AL 3 Jacobs ESSCA 4 National Weather Service Albuquerque, NM

• Burned landscapes present difficult hydrologic forecasting challenges for National Weather Service Offices
• Burned soils and landscapes can be conducive to the development of flash flooding and landslides from 

heavy precipitation events (Rammsey and Arrowsmith 2001)
• The severity of the burn scar can be directly related to the risk for debris flows (Cannon and DeGraff 2009) 

and flash flooding (Lewis et. al. 2006)
• Burned Area Reflectance Classification (BARC) map is generated to indicate the degree of burn severity, 

which is generated initially by high-resolution satellite imagery from sources such as Landsat, and later by 
labor-intensive efforts conducted at the burn scar by Burned Area Emergency Response (BAER) teams

• The challenge for operational meteorologists is that these sources of information are not readily available 
in near real-time
• Landsat imagery, for example, may only be available about once every eight days, and cloudy 

conditions can obstruct the observation of the burn scar during a single pass. 
• BAER teams cannot conduct assessments until the wildfire has been at least 40 percent contained (up to 

80 percent in some regions), and the process itself can take further days to weeks to complete 
depending on a number of factors

• To help remedy this lapse in knowledge, NASA SPoRT has developed the generation of NBR imagery in 
the Advanced Weather Interactive Processing System (AWIPS) using data from the operational GOES 16 
and 17 satellites and S-NPP

• This presentation will discuss the development of the GOES- and SNPP-derived NBR and dNBR imagery 
and their initial evaluation by real-time decision makers

• NBR imagery takes advantage of the fact that spectral 
responses of near-infrared and shortwave-infrared are 
opposite for burned areas vs healthy vegetation.  

• For near-infrared (~0.86 µm): Burned areas have low 
reflectance, while healthy vegetation has high reflectance.

• For shortwave-infrared (~2.2 µm): Burned areas have high 
reflectance, while healthy vegetation has low reflectance. 

NBR=  (0.86 µm – 2.2 µm)/(0.86 um + 2.2 um)

A couple of examples:
Healthy Vegetation…
0.86 = 38%
2.25 = 15%
NBR = (38-15)/(38+15) = 0.43

Image courtesy: https://www.fs.fed.us/eng/rsac/baer/barc.html

Burned Vegetation…
0.86 = 18%
2.25 = 32%
NBR = (18-32)/(18+32) = -0.28

Positive values = healthy vegetation
Lower values (negative) = burned areas

NBR Image above indicates burned areas in 
bright yellows-reds

• The change in pre-fire and post fire NBR is known as dNBR.

dNBR = Prefire NBR – Postfire NBR

• dNBR is used to assess burn severity and vegetation regrowth 
compared to pre-fire conditions.

• Prefire imagery will have very high near infrared band values 
and very low mid infrared band values.

• Postfire imagery will have very low near infrared band values 
and very high mid infrared band values.

• It can be difficult to distinguish between burned and non-
vegetated areas in dNBR imagery 

In the GOES-17 NBR images above, notice the spread 
of the burn scar from 17 June to 27 June.  Burn scar 
severity in SW portion of the Woodbury Fire remains 
fairly stable through the period, but the scar has 
spread due to the ongoing fire and the worst burn 
severity developed after 17 June.  The fire perimeter is 
also shown for this fire (right) as of 27 June 2019.  False 
NBR returns can be seen along Theodore Roosevelt 
Lake to the north of the Woodbury Fire.  However, 
other burn scars can be seen in the imagery on the 27 
June image (right).

Conclusions

GOES-16/17 NBR imagery 
available first, minutes to hours 

(clouds permitting)

S-NPP NBR and/or dNBR
imagery, once per day 

(clouds permitting)

Higher-res dNBR imagery (e.g., Landsat, 
Sentinel), based on satellite, but typically 

days to weeks (clouds permitting)

High-res BARC map 
produced from hi-res 

satellite imagery

BAER team and soil burn 
severity map 

(containment/availability 
permitting), several weeks plus

GOES-17 NBR image with 
visible (0.64 µm) imagery 
overlays provides context 
for clouds and smoke, and 
makes the imagery 
appear more intuitive.  
Notice that smoke can be 
observed from the 
ongoing fire.  The visible 
imagery is set to partial 
transparency (75%). 

Woodbury Fire, GOES-17 NBR Image
2101 UTC 17 June 2019

Woodbury Fire, GOES-17 NBR Image
2051 UTC 27 June 2019, with 2019 Fire Perimeters

Woodbury Fire, Suomi-NPP NBR Image
2050 UTC 27 June 2019, with 2019 Fire Perimeters

In this comparison between GOES-17 NBR imagery 
(left) and S-NPP NBR imagery (right), notice the 
higher spatial resolution of the S-NPP imagery. Also, 
issues with false returns, such as those along Theodore 
Roosevelt Lake to the north of the Woodbury Fire do 
not occur in the S-NPP imagery as is the case with 
GOES imagery.  However, GOES imagery has the 
advantage of higher temporal resolution (every 5 
min), vs the S-NPP imagery, which will only generally 
be available once per day at any given location 
(clouds permitting). 

Woodbury Fire, GOES-17 NBR Image
2051 UTC 27 June 2019, with 2019 Fire Perimeters

Woodbury Fire, GOES-17 NBR/Vis Image
1911 UTC 20 June 2019, with 2019 Fire Perimeter

• Developed a process in collaboration with NWS to assess 
burn scar severity with new generation satellites in the 
early stages of fire development and growth

• Limited feedback due to lack of fires in initial test WFO 
(ABQ), but future users in ABQ and APRFC have 
provided feedback that data are sufficient to aid in 
decision-making.

• Field Validation of Burned Area Reflectance Classification (BARC) Products for Post Fire 
Assessment, Hudak et al. 2004

• Fire Severity Assessment by Using NBR and NDVI Derived from LANDSAT TM/ETM Images, 
Escuin et al. 2007

• Rammsey, M. S., and Arrowsmith, J. R. ( 2001), New images of fire scars may help mitigate 
future natural hazards, Eos Trans. AGU, 82( 36), 393– 398, doi:10.1029/01EO00243.

• Cannon, Susan & De Graff, Jerome. (2009). The increasing wildfire and post-fire debris-flow 
threat in western USA, and implications for consequences of climate change. Landslides -
Disaster Risk Reduction. 177-190. 

• Lewis, Sarah A. et al. “Assessing burn severity and comparing soil water repellency, Hayman 
Fire, Colorado.” (2006).

High resolution Images courtesy Eric Holloway, Alaska Pacific River Forecast Center (APRFC)

Burn Scar

GOES VIIRS Landsat/Sentinel BARC Map Burn Severity Map

Next Steps
• Continued testing with and feedback from NWS 

Western Region HQ and Albuquerque Forecast 
Office, planned discussions this fall

• Refine a technique for processing and 
disseminating GOES and S-NPP dNBR imagery in 
GIS format, minimizing cloud effects

• Since NBR imagery are generated from GOES-16/17 and S-NPP bands in AWIPS, information about the burned vegetation can be observed in real-time  
• Low values (bright yellow-orange-red) indicate burned vegetation severity, colors shifted to red with increased negative difference in NIR and SWIR
• High values (light green-dark green) indicate healthy vegetation, colors shifted to darker green with increased positive difference in NIR and SWIR
• Ongoing fires will generally show up as red to dark brown colors due to higher emissions in the 2.2 um band
• False returns at edges of water bodies occur in GOES-16/17 imagery due to differences in spatial resolution of 0.86 µm band (1 km) and 2.2 µm band (2 km) 

DNBR Burn Severity

< -0.25 High post-fire regrowth

-0.25 to -0.1 Low post-fire regrowth

-0.1 to 0.1 Unburned

0.1 to 0.27 Low-severity burn

0.27 to 0.44 Moderate-low severity burn

0.44 to 0.66 Moderate-high severity burn

> 0.66 High-severity burn

https://www.fs.fed.us/eng/rsac/baer/barc.html
https://doi.org/10.1029/01EO00243
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Garay, M. J. et al. (2020). Introducing the 4.4 km spatial resolution Multi-Angle Imaging 
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On 12 February 2019 the Geostationary Operational Environmental Satellite-17 (GOES-17) became operational as GOES-West, providing detailed observations of the Western United States
from the Advanced Baseline Imager (ABI), which is the primary instrument on the latest GOES-R series of satellites. The summer and fall 2019 wildfire season in the Western US provided the
first test of the aerosol retrieval capabilities of the new instrument, especially aerosol optical depth (AOD), associated with extreme fire events. At the same time, the Multi-angle Imaging
SpectroRadiometer (MISR) instrument remains operational on the NASA Terra EOS satellite, yielding an unprecedented opportunity to compare simultaneous aerosol retrievals from both ABI
and MISR. Validation of these retrievals is further enhanced by the deployment of additional Aerosol Robotic Network (AERONET) sun photometer sites as part of the joint NASA/NOAA FIREX-
AQ field campaign, which took place in the summer of 2019.

Instruments GOES comparisons with MISR

References

MISR AOD vs. AERONET

MODIS Terra view of the Pacific Northwest on 8 August 2019.
Smoke from fires in Washington is clearly visible near the US-
Canadian border. The aerosol retrievals to the right show
generally good agreement between MISR and GOES, with
somewhat more extensive coverage from the GOES algorithm.

GOES comparisons with AERONET

Image Credit: Lockheed Martin

Figure from Schmit et al. (2017)

The GOES-West Satellite (GOES-17),
formerly GOES-S carries the
Advanced Baseline Imager (ABI) that
provides sensitivity to multiple bands
in the visible and shortwave infrared
portion of the spectrum. This provides
a new capability for aerosol retrievals
that was not present with the previous
generation of imaging sensors on the
GOES series of satellites. Here we
consider the Level 2 aerosol products
designated OR_ABI-L2-AOD[F/C]-M6
from GOES-17 for the dates of 3
August through 21 August 2019 during
the western phase of the FIREX-AQ
field campaign.

The Multi-Angle Imaging SpectroRadiometer (MISR) instrument has
been operational on NASA’s polar-orbiting Terra satellite since early
2000. MISR’s nine cameras observe four wavelengths in the blue,
green, red, and near-infrared portion of the spectrum. Together, this
information is used to retrieve aerosol amount – aerosol optical
depth (AOD) – over both land and water with a spatial resolution of
4.4 km as well as particle type information. Comparisons with
ground-based AERONET sun photometers show that MISR AOD
retrievals are of extremely high quality (Garay et al., 2020). Here we
consider the MISR AS_AEROSOL product F13_0023 (Version 23).

GOES-MISR regression statistics

MISR and GOES data for 8
August 2019 were spatially
matched within the latitude
range from 31°N to 49°N to
focus on the Western US.
Regression plots and
associated statistics were
calculated for GOES
CONUS (AODC) and
GOES Full Disk (AODF)
independently, as shown in
the figures to the left. On
this day, the agreement
between MISR and GOES
was very good, with better
results when the GOES
data were restricted to
High Quality (DQF = 0)
retrievals only, compared
to Medium-High Quality
(DQF <= 1),

GOES data were also matched with ground-based AERONET sites for
times close to the overpass time of Terra (1800–1900 UTC) for the
entire time period from 3 August to 21 August 2019. The AERONET
AODs were interpolated to the 550 nm reference wavelength of
GOES. Some of the AERONET sites experienced heavy smoke (see
photos) during the FIREX-AQ time period. Regression plots and
associated statistics are more limited due to the restricted time period.
These results show that the GOES aerosol products perform fairly well
relative to AERONET, but the GOES aerosol retrievals tend to
overestimate the AOD. However, the GOES observations provide
important information on the temporal development and downwind
transport of smoke during FIREX-AQ.

Smoke over AERONET site on 7 August 2019
Image Credit: David Giles (NASA GSFC/SSAI)

Smoke from Williams Flats Fire on 6 August 2019
Image Credit: David Giles (NASA GSFC/SSAI)

https://doi.org/10.5194/amt-1


Hazardous	Weather	Forecasting	Using	High	Resolution	Leo/Geo	Soundings	
W.	Smith	Sr.1,2	,	Q.	Zhang2,	E.	Weisz1,	A.	DiNorscia2,	S.	Lindstrom1	

1U.	of	Wisconsin	(USA),	2Hampton	U.	(USA)	
	A	system	has	been	set	up	to	produce	in	near	real-time	nowcasting	and	forecast	model	input	data	from	combined	Direct	Broadcast	Satellite	(DBS)	Polar	

Hyperspectral	 (PHS)	 CrIS/IASI	 and	GOES	ABI	 (PHSnABI)	Data.	 The	data	 is	made	 available	 to	 potential	 users	 via	 the	 internet	 and	 through	 the	NWS	
AWIPS.	Studies	are	being	performed	to	demonstrate	severe	and	precipitation	forecast	improvements	using	these	data.	The	PHSnABI	observation	and	
forecast	products	will	be	provided	to	weather	forecasters	for	evaluation	during	the	NOAA	spring	2020	Hazardous	Weather	Testbed	(HWT).	

“Fusion Process* 

PHS and ABI Characteristics Assimilating PHSnABI 
•  NOAA	RAP-like	configured	9-Km	WRF	Model	

May 27/28 2019 Lifted Index & STP 

STP	forecasts	based	on	the	WRF	model	
initialized	using	PHSnABI	soundings.		Tornado	
and	hail	reports	are	shown	by	the	red	circles	
and	black	triangles,	respectively.	

6-hour Precipitation Forecast  
2020/02/19 15 UTC 

1 to 6-hour Precipitation Forecast  
2020/02/19 16 - 21 UTC 

 
Initial Condition 2020/02/19 (9 UTC) 

	 The	 goal	 of	 Severe	 Weather	 Research	 Center	 8-km	 Numerical	 Weather	
Prediction	 System	 is	 to	 provide	 meteorological	 satellite	 enhanced	 high	 resolution	
nowcasts	 and	 short-term	 numerical	 forecasts	 for	 the	 purpose	 of	 warning	 the	 US	
population	 of	 impending	 High	 Impact	 Weather	 (e.g.	 tornados,	 hail,	 flash	 floods,	
tropical	storms,	and	hurricanes).	“Nowcast”	products	are	produced	from	near	real-
time	satellite	soundings	produced	by	the	fusion	of	direct	broadcast	operational	Polar	
(IASI	and	CrIS)	Hyper-spectral	Sounding	(PHS)	and	geostationary	Advanced	Baseline	
Imager	 (ABI)	multi-spectral	 sounding	 radiance	 data	 (PHSnABI).	 Numerical	Weather	
Prediction	 (NWP)	 products	 are	 produced	 by	 the	 hourly	 assimilation	 of	 PHSnABI	
soundings	 with	 operational	 conventional	 weather	 observations	 into	 the	 Weather	
Research	 and	 Forecasting	 (WRF)	 model	 configured	 with	 the	 same	 physics	 and	
forecast	 initialization	procedures	used	 in	 the	NOAA	Rapid	Refresh	Prediction	 (RAP)	
NWP	model.	The	nowcasting	products	which	take	advantage	of	PHSnABI	soundings	
assimilation	 provide	 hourly	 Significant	 Tornado	 Parameter	 (STP),	 Most	 Unstable	
CAPE	 (MUCAPE),	 Lifted	 Index	 (LI),	 Accumulated	 Precipitation	 for	 the	 Central	 and	
Eastern	US	regions.	Short-term	forecast	products	including	hourly	STP,	LI,	MUCAPE,	
accumulated	 precipitation	 and	 6-minutes-interval	 composite	 radar	 reflectivity	
forecasts	are	generated	using	the	same	background	that	provides	nowcast	products.	

Nowcast Website (194116 UTC) 
http://dbps.cas.hamptonu.edu/development/	

Contingency	

Sounding Retrieval Process  
 Dual Regression + De-Alias (DRDA)* 
-  Alias	=	Forecast	Retrieval	–	Forecast	Profile	
-  DRDA	Retrieval	=	DR	Retrieval	–	Alias	

*		Smith,	W.	L.,	and	E.	Weisz,	2017:	Dual	Regression	Approach	for	High	
Spatial	Resolution	Infrared	Soundings,	in	Comprehensive	Remote	Sensing,	
M.	Goldberg,	Editor,	Elsevier	Ltd,	Langford	Lane	Oxford,	OX5	1GB	UK.	

PHS and ABI Sounding Fusion  

PHS and ABI Fusion Example 

Significant Tornado Parameter (STP) 



Improving Blended Total Precipitable Water (TPW) Products for Forecasters Via Advection and Inclusion of GOES-R
John M. Forsythe, Stanley Q. Kidder, Sheldon J. Kusselson, Dan Bikos, Andrew S. Jones, Louie Grasso, Ed Szoke

Cooperative Institute for Research in the Atmosphere, Colorado State University

What Do Forecasters Currently Use 
Operationally for Blended TPW?

Cloud-Free Water Vapor Imagery 
Derived from Passive Microwave Data

View near-realtime animations at:    http://cat.cira.colostate.edu/ABI_TPW_FD/Merged_TPW.htm http://cat.cira.colostate.edu/GR3/GOESR_TB09_SIM_Hourly.htm htm http://cat.cira.colostate.edu/ GR3/GOES17_TB09_SIM_Hourly.htm 

John.Forsythe@colostate.edu

How is the Merged TPW with GOES-16 Created?

This work is supported by the NOAA GOES-R Risk Reduction and JPSS Proving Ground and Risk Reduction 
Programs.

Forecaster Surveys from Hazardous Weather 
Testbed (HWT) and Flash Flood and Intense 

Rainfall Experiment (FFaIR)

GOES-16 TPW Continues to Validate Well

Summary

• A new blended TPW product which uses advection and GOES-
16 in clear skies has been developed.

• Comparisons of the GOES-16 TPW versus surface GPS and 
OCO-2 show low error (RMS ~2 mm) with good temporal 
stability.

• Forecasters rated the new product higher than the current 
operational product.

• Open Question:  How much model input is too much?

Collaborators:  Tony Wimmers (CIMSS), Limin Zhao (NOAA OSPO), Ralph Ferraro (NOAA STAR), Chris Grassotti (CISESS-Univ of MD), Andrew Orrison (NOAA WPC), Chris Gitro, Mike Jurewicz, Dan Leins (NOAA/NWS)

Summary and Future Work

Future Work
• Transition the new merged TPW into operations, including CIMSS 

MIMIC product.
• Survey users for applications of cloud-free water vapor imagery.

Current satellite suite used at OSPO for 
blended TPW.  Times of ascending / 
descending nodes show for 
synsynchronous satellites.  GPM 
precesses through all times.

But current product does not 
include GOES-R data…

Supports results in:

Schmit, T. J., Li, J., Lee, S. J., Li, Z., Dworak, R., Lee, 
Y.‐K., et al. (2019). Legacy atmospheric profiles and 
derived products from GOES‐16: Validation and 
applications. Earth and Space Science, 6, 1730–
1748. https:// doi.org/10.1029/2019EA000729

Daily validation 
against surface GPS 
stations

Validation against NASA 
Orbiting Carbon 
Observatory-2 

GOES-R brings 15 minute full 
disk coverage in clear areas –

big improvement over 
previous sounders

Configuration – Version 1 Cloud-Free Water Vapor Imagery
• Uses Advected Layer Precipitable Water (ALPW - polar satellite microwave 

product derived from NOAA MiRS soundings)
• GFS temperature profile
• CRTM  v2.2.3
• Fixed surface and aerosol properties 
• 16 km Mercator projection (same as TPW / ALPW family)
• Produced hourly for GOES-16/-17.

Hypothesis: ABI Water vapor channels (6.2, 6.9 and 
7.3 µm) simulated from microwave water vapor 

soundings will detect dry air masked by cirrus clouds 
in ABI imagery.

Cirrus over Dry Atmosphere

Observed
6.9 µm GOES-
16  imagery

Simulated

6.9 µm GOES-17  imagery

http://cat.cira.colostate.edu/ABI_TPW_FD/Merged_TPW.htm
http://cat.cira.colostate.edu/GR3/GOESR_TB09_SIM_Hourly.htm
http://cat.cira.colostate.edu/ABI_TPW_FD/Merged_TPW.htm
http://cat.cira.colostate.edu/GR3/GOESR_TB09_SIM_Hourly.htm
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