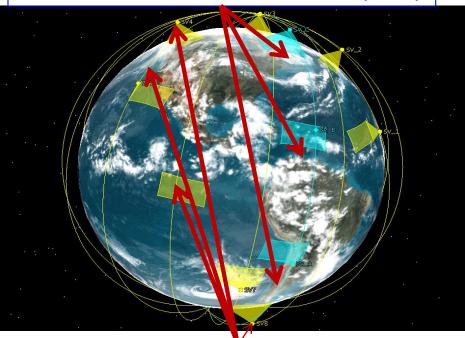


Miniature IR Sounder Constellation for Thermodynamic and Wind Vertical Profiles

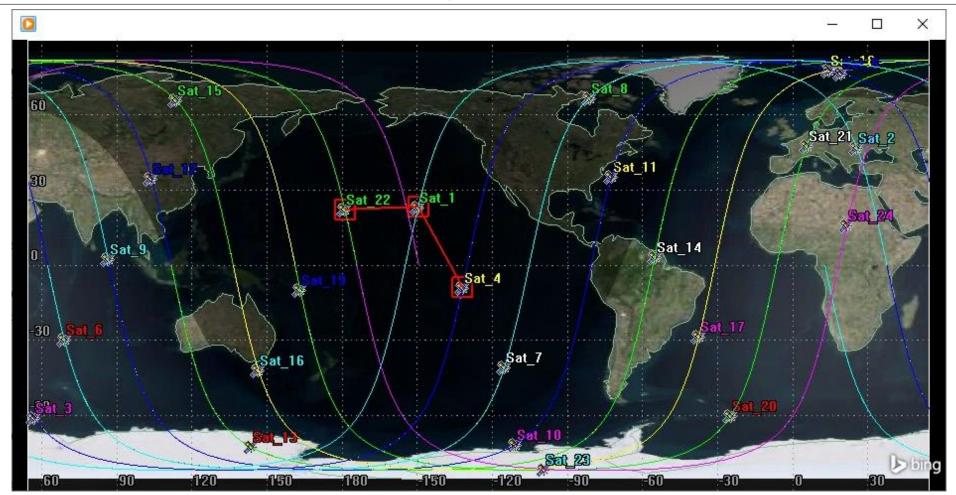
POC:kevin.maschhoff@baesystems.com



Cost and Concept Study Builds on BAE's MISTiC Winds Distributed Micro-Satellite Approach

- MISTiC[®] Winds Temperature and Humidity Sounding Constellation Options.
 - 1. Frequent-Sounding Constellation
 - e.g. 90 min refresh-globally (8)
 - e.g. 30 min refresh-globally (24)
 - 2. Wind-Vector Formations
 - e.g. 4 3-Satellite Formations for Cloud-Drift and Water Vapor Motion-Vector Winds
 - Both Provide More Frequent
 Atmospheric Soundings (T, H₂O)

Miniature Spectrometers Operated in Constellations Offer Lower Cost /Lower Risk Approach than GEO for Frequent-Refresh IR Soundings & 3-D Winds


Motion-Vector Winds Formation (blue)

90 min Refresh of IR Soundings Provided by Spectrometers in 8 Orbital Planes (gold) (example)

BAE SYSTEMS INSPIRED WORK

A 24-Node SSO Constellations Provides 30-Minute Global Refresh of IR Sounding Observations

- Operational Constellation Can Be Built Up Incrementally-Providing Value at Each Stage
 - e.g. Initiated During LEO Sounder-Sat Demonstration Period
 - e.g.-Expanded together with Numerical Weather Prediction Refresh Rate Upgrades

BAE SYSTEMS

INSPIRED WORK

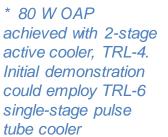
Next-Gen IR Vertical Profiling Constellation Employs Suite of Miniature Hyperspectral Sounders

MISTiC Profiles Temperature and Water Vapor in the Troposphere

- Spectral Range: 1750-2450 cm⁻¹
- Spectral Resolving Power > 725:1
- NESR < .01 mW/m²/str/cm⁻¹ @ 2393 cm⁻¹

LISSTIC Profiles Temperature in the Troposphere and Stratosphere

- Spectral Range: 680-1050 cm⁻¹
- Spectral Resolving Power > 900:1
- NESR < 1.03 mW/m²/str/cm⁻¹ @ 740 cm⁻¹ $30.5 \times 23.5 \times 20.7$ cm


LISSTIC®

Mass: 20 kg
Size (Stowed):
30.5 × 23.5 × 20.7 cm
OAP: 80 W
TRI -6*

For any Observing Node, the two instruments can operate together, or MISTiC can be used alone, providing flexibility on stratosphere refresh rate, deployment, and cost.

(MISTiC = Midwave Infrared Sounding of Temperature and humidity in a Constellation)

Elements of a New Paradigm for Weather Observation in a Distributed Architecture

	В	A	E		5	Y	S	П	Ξ	M	E	5
ı	N	S	Р	1	R	F	D	١	M	0	P	ĸ

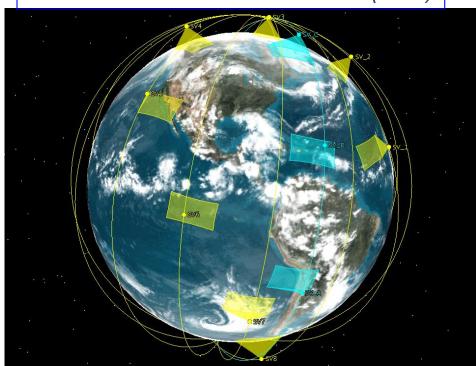
Element	Benefit for NOAA	Example
Miniature Robust but Single-String IR Sounding Instruments –5 yr life plan	Leveraging NASA Investment and Moore's Law to Lower Cost	
Standard Micro-Satellite Hosts—Selected for DoD Constellations	Multiple Sources, Leveraging NASA and DoD Investments and Need for Large Numbers	
Sun-Synchronous Low Earth Orbit Selection	 More Stable for Calibration Lower-Cost Access than GEO 50 x closer—Small Optics 	
Commercial Small-LV – Based Services	Multiple Sources- Driven by DoD and Commercial Space Market	LAUNCHERONE
Low Impact SSO Plane Change Capability (SSO _A →Polar→SSO _B)	Enables Multiple Observing Nodes per Launch, Reducing Cost and Deployment Period	

Distributed Architecture of Small Instruments

- Increases Resilience and Fault Tolerance
- Reduces and Spreads Cost
- Increases Flexibility and Technology Infusion Potential

Global Observations Provided by 24-Node SSO BAE SYS **IR Sounding Constellation**

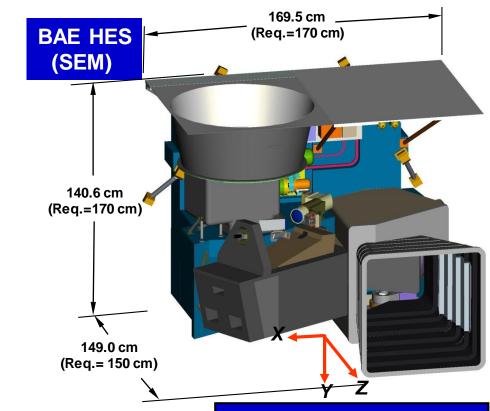
Observation Product (Baseline)	Refresh Rate	(N) Spatial Sampling	Comments
LEO IR Vertical Profiles of Temperature and Water Vapor and Radiances (two CO ₂ Bands)	12 hours	9 km (6x6 sub- sampling)	For Each Plane AddedCloud-Cleared Radiances
Rapid Refresh IR Vertical Profiles of T and WVand Radiances	30 min	3 km	HES PORD Spectral Quality
Vertically Resolved Water Vapor Motion-Vector Winds (assuming wind triplet observation)	90 min	15 km (5x5 sample tracer)	Also Improves and Height Assignment for GEO Cloud AMVs
High Latitude Multi-Spectral Meterological Imaging	5 min;>80° 10min;>70°	1.5 km	Similar to an ABI in Tundra Orbit
Low-Impact Options			
Day/Night Band (visible)	30 min	0.5 km	0.5 kg Add to MISTiC
Host for T and WV μWave Sound	30 min	e.g. 30 km	e.g 4 kg Add to S/C


LEO SSO Constellation Provides Substantial Observation Value In Addition to Temperature and Water Vapor Vertical Profiles-With Potential for More

Additional Notes on Hyperspectral AMVs

- Vertically Resolved Wind Observations are Provided by the IR Sounding Constellation at Rates Typical of GOES-R Water-Vapor Wind Observations
 - 30-minute image refresh
 - 90 minute wind-triplet refresh
 - or 60-minute refresh, using "Optical Flow" methods
- LEO Hyperspectral Constellation Offers Improved Height Assignment for GEO Meteorological Imager Cloud AMVs
 - IR Sounding Retrieval Identification of Cloud-Top Pressure for Wind-Tracer Clouds
 - Cross-correlation between GEO Imager and LEO Sounder Features Facilitated by Common Band Coverage and Comparable Spatial Resolution

Motion-Vector Winds Formation (blue)



MISTiC Winds Initial Demonstration Configuration

- Three Hyperspectral Sounders in a Wind-Triplet Configuration
 - 10-15 minute Time Separation
- Possible Implementation of NOAA's SounderSAT (Distributed Architecture)

GOES-R Sounder (HES) after Formulation Phase Forms Basis of a Cost Model Comparison for Next-Gen Sounder

- BAE Systems Led One of Three Contractor Teams in HES Formulation Phase
 - Dilts Associates Provided Model Cost Estimates for GOES-R HES Instrument Program
- HES PORD Requirements Similar, but Not Identical to GEO BAA
 - FPA Size and Optics Aperture (and mass) Would Increase to Meet GEO BAA Rates
- Some Technology
 Advances since 2007
 Could Allow Reduced Cost
 (Additive Manufacturing,
 FPA Technology, Elect.)
- → Cost Impacts Assumed to Counter-Balance

Performance Characteristics

- Spectral Coverage:
 - 4.165-5.92 μm (1689-2400 cm⁻¹)
 - 9.65-14.7 μm (680-1036 cm⁻¹)
- Spectral Resolution: λ/δλ>1000
- NE∆T: 0.2K
- Spectral Stability: <0.01 δλ

HES Characteristics

- Mass: 214 kg
- Power: 326 W
- Data Rate: 7.3 Mbps
- SW/M Coverage Rate:
 - CONUS/hr @ 5 km GSD
- Disk Sounding Coverage Rate:
 - 62 Deg. Disk/hr @ 10 km GSD

IR Sounding Requirement Summary (Level 2)

Attributes	LEO Target (Baseline) Source: NOAA LEO BAA	GEO/XO Target Source: NOAA GEO BAA	Current Program of Record (CrIS/N-20) Source: JPSS Level 1 Requirements Document	MISTiC + LW/VLW Instrument Suite Constellation Pro-jected Capability				
Update Rate								
Full Disk (62 deg LZA)	(12 Hours	30 min		30 min for Surf to 30 mb, 90 min for				
CONUS	Assumed)	30 min	12 Hours	30 mb-0.5 mb				
MESO	•	5 min						
A. Horizontal Resolution (Horizontal Cell	10 km(at	3 km(at		3 km –CF, S-30 mb				
Size or Spatial Resolution)	nadir)	nadir)	14 km	6 km –PC, S-30 mb				
				9 km-PC, 30-0.5mb				
	B1. Temperature Measurement Precision Expressed as an error in layer average temperature							
1. Cloud-Free (CF) to Partly	1.6 K per 1		1.6 K per 1 km Layer	1.6 K per 1 km Layer				
Cloudy (PC), Surface (S) to 850	km Layer	0.75 K						
mb over ocean		(Accuracy)						
2. Cloud-Free to Partly Cloudy,	1.6 K per 1	per 2 km	1.6 K per 1 km Layer	1.6 K per 1 km Layer				
850 to 300 mb over ocean	km Layer	layer						
3. Cloud-Free to Partly Cloudy,	1.5 K per 3		1.5 K per 3 km Layer	1.5 K per 3 km layer				
300 mb to 30 mb	km layer	(Vertical						
4. Cloud-Free to Partly Cloudy,	1.5 K per 5	Coverage	1.5 K per 5 km Layer	1.5 K per 5 km layer				
30 mb to 1 mb	km layer	Range Not						
5. Cloud-Free to Partly Cloudy, 1	3.5 K per 5	Specified)	3.5 K per 5 km Layer	3.5 K per 5 km layer				
mb to 0.5 mb	km layer							
B2. Moisture Measurement Precision (ex								
1. Cloud-Free to Partly Cloudy,	Greater of 20	10%	Greater of 20% or 0.2 g/	Greater of 20 % or 0.2 g kg-1				
Surface to 600 mb	% or 0.2 g kg-	(Accuracy)	kg					
2. Cloud-Free to Partly Cloudy,	Greater of 35	per 2 km	Greater of 35% or 0.1 g/	Greater of 35 % or 0.1 g kg-1				
600 mb to 300 mb	% or 0.1 g kg-	layer	_	Greater of 35 % of 0. 1 g kg-1				
600 mb to 500 mb	% 01 0. 1 g kg-		kg					
3. Cloud-Free to Partly Cloudy,	Greater of 35	(Vertical	Greater of 35% or 0.1 g/	Greater of 35 % or 0.1 g kg-1				
300 mb to 100 mb	% or 0.1 g kg-	Coverage	kg	3 3				
	1	Range Not	3					
		Specified)						
Latency	-	10 min	-	10 min				
C. Horizontal coverage from 832 km	2000 km	NA	2200 km	2000 km				
orbit	_	_	_	- 0.4 (1)				
D. Lifetime of the Sensor (in years)	5	5	7	5 (With partial constellation refresh)				

Considerations for Complementary DWL and IR Hyperspectral Wind Observations

- Both DWL and IR Hyperspectral AMVs Should Each Provide Valuable Constraints on Numerical Weather Models
 - OSSEs for Each show Forecast Accuracy Improvements
 - AEOLUS Demonstration Encouraging
- However, a Dedicated US Demonstration Mission Would Face Substantial Barriers
 - Aggregate Cost would Exceed NASA Earth Venture Budget Cap
 - Preferred Orbit Conditions for Hyperspectral AMVS and DWL are Not Compatible
 - HSI AMV (MISTIC): LEO SSO, 650-850 km altitude
 - Multi-Platform Observation--Micro-Sat Hostable
 - DWL: LEO 300-400 km, can be SSO, but not required
 - Medium-Sized (or Larger) Satellite with High-Power -Demand Payload

Notes on Use of Simultaneous Nadir Overpasses for Cross-Calibration and Observation Comparison

- Cross-Calibration of IR Sounders is a Long-Standing Priority of the Science Operational Weather Communities—and Could be used for Comparison of 3D Wind Observations
 - Most-Valued Approach: Observation Comparison at Simultaneous Nadir Overpasses
 - In the Case of Two
 Observatories in SSOs...
 - SNOs occur at high latitudes (70-80 Deg.)
 - Rate of SNOs Proportional to Orbit Period Difference
 - SNOs Available for any LTAN and Height, but only observe polar zone conditions
 - AEOLUS is in a 300 km SSO with 1-week repeat

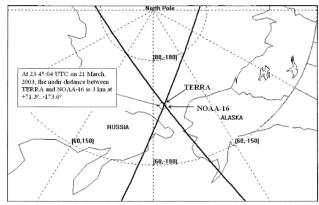


Fig. 1. Simultaneous (1 s) nadir overpass (SNO) between NOAA-16 and Terra.

 While MISTiC Winds is Designed to be in SSO, a DWL may not require this orbit type—changing the SNO Opportunities in frequency and latitude

BAE SYSTEMS INSPIRED WORK

Summary

- NOAA is Studying Options for its Next Generation Observing System
 - LEO-Focused initially on Vertical Thermodynamic Profiling "SounderSAT"
 - GEO/XO---Including Interest BAE's LEO Sounding Constellation
 - Vertically Resolved Atmospheric Motion-Vector Wind Observations Enabled
 - NOAA has Included Interest in the Vertical Wind Profile In This Planning
- BAE Systems LEO IR Sounding Constellation Study Shows that Observations of the Needed Science Data Quality are Achievable and Affordable, and Lower Cost than GEO Implementation
 - Including Vertically Resolved AMVs
- Comparisons of Hyperspectral AMVs with DWL More Likely Through Cross-Platform Comparisons Rather than a Joint, Co-manifested Mission
 - Both Observation Types Would Add Significant Value for NOAA