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Motivation for a new analysis

• Uncertainty is critical for all climate related applications
• Most previous work has focused on:

– uncertainty in global scale long-term trends or
– has been narrowly focused on regional radiosonde comparisons

• However, many applications or intercomparison efforts
are focused on regional analysis or short time scales

• Little information on the uncertainty on these time/space
scales



This Analysis

• “Ground up” uncertainty analysis based on estimates of
uncertainty at each processing step

• Brute-force Monte-Carlo approach
• Results are in the form of random gridded realizations of

the error
• The random realizations can be processed using the

same code/methods as is used to process the actual
data for the study in progress

• Thus uncertainty estimates available for all space/time
scales



Sources of uncertainty for MSU/AMSU

• Instrument noise
• Sampling
• Errors in diurnal adjustment
• Calibration errors

• The effect of these on the merging process
– merging parameters (which are intended to fix calibration errors)

are deduced from intersatellite differences
– Errors in differences can lead to errors in merging parameters

• Other, unknown errors… probably are small???



Sampling Noise

Sampling for 1 day, 1 satellite
(TMT, TTS, or TLS)

Time series for the a single point in the North
Pacific (40N, 170W)

CCM3
Simulation



Sampling Uncertainty in MSU Channel 2

Uncertainty is largest in the mid latitudes, where interesting weather and
gaps in satellite coverage combine to give large errors.

The sampling uncertainty tends to be strong correlated in space, with the
errors in nearby pixels similar.

Tends to not be correlated over month-to-month time scales, so the
direct effect on long term trends is small.



Diurnal Adjustment
Local Measurement times drift – need to adjust
measurements or the local diurnal cycle will alias into long
term trend.

We use a model based adjustment derived from CCM3.
Errors in this adjustment were unknown.

 Compare adjustments with adjustment derived from other
models



CCM3, HADGEM1 and CMAM
For TMT and TLT, we now have 1 additional model.  We obtained monthly

averaged hourly data from a HADGEM1 diagnostic run.
For TTS and TLS, we also have results from CMAM.

Global Adjustments applied to NOAA-14



Trend Differences with Different Diurnal Adjustments



Diurnal Adjustment Uncertainty
• Crude guess at uncertainty from inter-model differences
• Uncertainty is correlated in space and time

– Dry, land areas have large uncertainty
– Large seasonal cycles in uncertainty

• Errors in diurnal adjustment lead to changes in the
merging parameters.
– Calibration target temperatures (a prognostic variable for

calibration adjustments) have large seasonal signals.
– Errors in diurnal cycles lead to latitude dependent changes in

intersatellite offsets.
• Changes (Errors) in merging parameters in turn lead to

spatially and temporally correlated errors.

Too Complex to Represent with Traditional Statistical Metrics!

USE MONTE CARLO.



The Plan
1. Start with a gridded monthly dataset of all zeros.  Each satellite’s

data is valid only for months when that satellite was actually
observing.  (144x72x384x10)

2. For each valid satellite/month, add in a random realization of the
sampling uncertainty.

3. Then add in a realization of the diurnal uncertainty.
diurnal adjustment = sqrt(2)/2 aΔdiur
a is a zero-mean random variable with unit variance
Δdiur is the difference between the CCM3 and HADGEM1
adjustments

4. Perform merge using same method as we use for the real data.
5. Repeat a large number (right now 400) of times to get numerous

realizations of the expected errors.
(144x72x396x400)  2 GB – large but manageable.



Advantages

• Spatial and Temporal correlations in sampling and
diurnal uncertainty automatically included.

• If the above do a good job of describing the real
intersatellite differences, then the effects of sampling and
diurnal error on the merging parameters are correctly
included.

• Dataset can be interrogated in a number of ways to
estimate uncertainty for various numerical products and
experiments.



Comparison of After-the-Merge
Intersatellite Differences

Std. dev. of monthly average
intersatellite differences in real
MSU channel 2 data.

Std. dev. of monthly average
intersatellite differences in
simulated MSU channel 2
data.



Example monthly error
TMT, January 2003, Realization 0



Example monthly error
TMT, January 2003, Realization 1



Spatial Dependence of Temporal Correlation
of after-the-merge intersatellite differences

Simulated Correlation

Actual Correlation from MSU 2 Data

Reference Point



Errors in Trends, TLT, 1979-2008



Correlation of Errors in Trends between
different realizations, TLT, 1979-2008



Example: Long Term Trends

• Compare trend uncertainty in 3 weightings
– Global Average
– Tropical (20S to 20N)
– Continental USA



Trends in error realizations
TMT, 1979-2008

Global

Tropical
(20S-20N)

Fingerprint

σ = 0.026

σ = 0.018

σ = 0.029

Trend, K/decade

σ = 0.053Continental
USA



Example 2
Comparison with Homogenized Radiosondes

Sample both real data and error realizations at the radiosonde locations
Analyze Sampled Error Time Series to determine uncertainty estimate

Typical Spatial Sampling for RICH



Radiosonde Comparison: TLT



Radiosonde Comparison: TLS



Summary and Availability

Monte Carlo analysis provides information about
uncertainty on all space and time scales.

This uncertainty information should be used for all
intercomparison and climate change analysis using our
data.

Will be on our website after we submit the paper -- if you
want access before that, send me an email.


