

College of Engineering Department of Atmospheric, Oceanic & Space Sciences

NOAA Workshop on Climate Data Records from Satellite Microwave Radiometry

Silver Spring, MD 22-24 March 2010

Vicarious Calibration using Stationary T_B Statistics

Chris Ruf and Darren McKague Dept. of Atmospheric, Oceanic & Space Sciences University of Michigan cruf@umich.edu, 734-764-6561

Summary

- Hot and Cold T_B vicarious statistical references have been developed which provide
 - Excellent relative calibration (~ 0.1 K) between instruments and between modes of a single instrument
 - Correct for differences in frequency and incidence angle
 - Doesn't require coincident observations in time or space between instruments
 - Relative calibration is very insensitive to radiative transfer model errors
 - Good absolute calibration standard (~ 0.5 K) for each individual instrument
 - Accounts for specific frequency and incidence angle of each instrument
 - Doesn't require coincident observations with ground truth obs or numerical models
 - Absolute calibration IS sensitive to radiative transfer model errors

Previous Applications of Vicarious Calibration Method

• TOPEX Microwave Radiometer Absolute Calibration

- Ruf, C.S. "Detection of calibration drifts in spaceborne microwave radiometers using a vicarious cold reference," IEEE Trans. Geosci. Remote Sens., 38(1), 44-52, 2000.
- Keihm, S.J., V. Zlotnicki and C.S. Ruf, "TOPEX Microwave Radiometer Performance Evaluation, 1992-1998," IEEE Trans. Geosci. Remote Sens., 38(3), 1379-1386, 2000.
- Ruf, C.S., "Characterization and Correction of a Drift in Calibration of the TOPEX Microwave Radiometer", IEEE Trans. Geosci. Remote Sens., 40(2), 509-511, 2002.

TOPEX/SSM/I Cross Calibration

Ruf, C.S., S.J. Keihm, B. Subramanya, and M.A. Janssen, "TOPEX/POSEIDON Microwave Radiometer Performance and In-flight Calibration," J. of Geophys. Res., 99(C12), 24915-24926, 1994.

Jason-1 Microwave Radiometer Absolute Calibration

 Brown, S.T., and C.S. Ruf, "Determination of a Hot Blackbody Reference Target over the Amazon Rainforest for the On-orbit Calibration of Microwave Radiometers," AMS J. Oceanic Atmos. Tech., 22(9), 1340-1352, 2005.

• TOPEX/Jason-1 Cross Calibration

- Brown, S., C. Ruf, S. Keihm and A. Kitiyakara, "Jason Microwave Radiometer performance and on-orbit calibration," Marine Geodesy, 27(1-2), 199-220, 2004.

• GEOSAT Follow-On/Jason-1 Cross Calibration

 Ruf, C.S., and A.M. Warnock, "GEOSAT Follow On Water Vapor Radiometer: Performance with a Shared Active/Passive Antenna," IEEE Trans. Geosci. Remote Sens., 45(4), 970-977, 2007.

WindSat Absolute Calibration

- Ruf, C.S., Y. Hu and S.T. Brown, "Calibration of WindSat Polarimetric Channels with a Vicarious Cold Reference," IEEE Trans. Geosci. Remote Sens., **44**(3), 470-475, 2006.
- Bettenhausen, M., E. Twarog and P. Gaiser, "On-Orbit Calibration of WindSat Brightness Temperatures, Proc. IGARSS, Barcelona, SPAIN, July 2007. Aquarius Absolute Calibration
- Ruf, C.S., "Vicarious Calibration of an Ocean Salinity Radiometer from Low Earth Orbit," AMS J. Atmos. Oceanic Tech., **20**(11), 1656-1670, 2003.
- Aquarius Absolute Calibration
 - Ruf, C.S., "Vicarious Calibration of an Ocean Salinity Radiometer from Low Earth Orbit," AMS J. Atmos. Oceanic Tech., **20**(11), 1656-1670, 2003.

• GPM Constellation Inter-Calibration

 McKague, D., C. Ruf and J.J. Puckett, "Microwave Radiometer Inter-Calibration Using the Vicarious Calibration Method," Proc. 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, S.A., Vol. IV, 117-120, 13-17 July 2009.

Michigan Engineering

Atmospheric, Oceanic and Space Sciences

Department of

Vicarious Cold Reference: Approach and Signal Processing

- ε*T_{surf} shown at 53° for typical radiometer window channels
- Minimum TB conditions
 - Optimum SST (vs. freq. and inc. angle)
 - No Clouds or Wind
 - Low humidity
- Signal Processing
 - Assemble T_B histogram
 - Compute cumulative distribution function
 - Extrapolate CDF to highest TB with zero probability of occurrence
 - This corrects for small residual atmospheric contributions

Michigan Engineering

Atmospheric, Oceanic and Space Sciences

Department of

pg 4 of 24

Vicarious Cold Reference Example: TMI 19 GHz H-pol

pg 5 of 24

Vicarious Hot Reference: Approach and RTE Model

- Hot reference T_B method uses depolarized regions of the world's rain forests as proxies for black body targets
 - Identify regions using |V-pol H-pol| de-pol'z metric
- Trained RTE model for frequency and incidence angle dependence
 - Unpolarized underlying surface and vegetation canopy
 - Frequency dependent vegetation canopy temperature
 - Atmosphere model parameterized by full year of Amazon RaOb profiles
 - Diurnal and annual harmonics for surface temperature, atmos. effective radiating temperature, optical depth model v. freq.

Depolarized Amazon Rainforest Hot Reference Regions

FIG. 1. Magnitude of the difference between vertically and horizontally polarized brightness temperature at 37 GHz, 53° incidence angle over the Amazon basin as measured by SSM/I. The red boxes denote regions of high depolarization, which have properties especially amenable to modeling as blackbody hot calibration reference sites.

pg 7 of 24

Vicarious Hot Reference Example: WindSat Depolarization Histograms in Amazon Regions

pg 8 of 24

Forward Model for Vicarious Warm Reference Brightness Temperature

$$\begin{split} T_b(f,\theta) &= \varepsilon(f) * T_{veg} e^{-\tau(f) \sec \theta} + T_b^{UP}(f,\theta) + (1-e(f)) T_b^{DN}(f,\theta) e^{-\tau(f) \sec \theta} \\ T_b^{UP} &= T_{eff}^{UP}(f) (1-e^{-\tau(f) \sec \theta}) \\ T_b^{DN} &= T_{eff}^{DN}(f) (1-e^{-\tau(f) \sec \theta}) + T_{coldsky} e^{-\tau(f) \sec \theta} \\ \tau &= b_0(f) + b_1(f) A \\ A &= V + 2L; \text{ V is water vapor, L is cloud water} \\ \varepsilon &= \varepsilon_0 + \varepsilon_1 f + \varepsilon_2 f^2 \\ T_{veg} &= T_0 + T_1 f \end{split}$$

- Optical depth model fit to RTE model applied to GDAS dataset
- T_{eff} calculated from RTE/GDAS at each frequency and incidence angle
- T_{veg} allowed to vary with frequency because lower frequencies will penetrate to deeper, cooler areas of the vegetation canopy

Vicarious Warm Reference Example: Surface Emissivity TMI Histogram at 6 GHz and Empirical Model

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 10 of 24

Vicarious Warm Reference Example: Vegetation Canopy Temperature

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 11 of 24

Vicarious Warm Reference Example: T_{veg} Diurnal Signal for TMI

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 12 of 24

Example of Use of Vicarious Hot/Cold Calibration for Single Sensor Diagnostics

Incidence Angle Variations and Scan Dependent Biases with WindSat

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 13 of 24

WindSat Vicarious Cold Reference vs. Scan Position TB (V-pol) w.r.t. Center of Scan

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 14 of 24

Vicarious Cold Reference Dependence on Incidence Angle

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 15 of 24

WindSat Vicarious Cold Reference vs. Scan Position Corrected for Roll and Pitch Offsets

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 16 of 24

WindSat Vicarious Warm Reference vs. Scan Position

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 17 of 24

WindSat Reference Tbs Edge of Scan Biases

- Both 6 GHz and 22 GHz Tbs show significant edge of scan biases
 - Emitter/scatter in side-lobes
 - Most likely from calibration loads
 - Must correct for in APC if we want to use edge of scan Tbs

23 Mar 2010 Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 18 of 24

WindSat Edge of Scan Bias Correction Algorithm

• Decompose measured antenna temperature into mainbeam and sidelobe contributions:

$$T_{A} = T_{b,mb} * (1 - bf_{sl}) + T_{b,sl} * bf_{sl}$$

- Solve for sidelobe effective average brightness temperature $T_{b,sl}$ and integrated sidelobe beam fraction, f_{sl} , as a function of scan position
- Separate retrieval for each frequency and polarization since blockage and resulting beam patterns will vary

WindSat Edge of Scan Sidelobe Correction Terms

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 20 of 24

WindSat Hot and Cold Vicarious Reference TBs with EIA and Sidelobe Corrections

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 21 of 24

Examples of Use of Vicarious Hot/Cold Calibration for Monitoring Long Term Drift

- TOPEX Microwave Radiometer: Drift in cal switch leakage
- Geosat Follow-On Water Vapor Radiometer: Stable calibration over mission life

23 Mar 2010 Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 22 of 24

TOPEX Microwave Radiometer vs. Geosat Follow-On Water Vapor Radiometer

- TMR
 - ~1.5 K drift in vicarious cold reference from Fall
 1992 (launch) to Winter
 1998
 - Hardware root cause identified as slow change in isolation of onboard calibration switch
- GFO
 - Constant vicarious cold reference from Oct 2000 through Apr 2006

pg 23 of 24

Example of Use of Vicarious Hot/Cold Satellite Intercalibration

Global Precipitation Measurement Mission Constellation Intercalibration

23 Mar 2010

Ruf, NOAA CDR Wkshp, Vicarious Cal

pg 24 of 24

