

C. I C. S- M.D. Cooperative Institute For Climate & Satellites



# **AMSU-A Asymmetry for Window Channels**

# Wenze Yang<sup>1</sup>, Huan Meng<sup>2</sup>, Ralph Ferraro<sup>2</sup>

<sup>1</sup>NOAA Corporate Institute for Climate and Satellites <sup>2</sup>NOAA/NESDIS/STAR/CoRP/Satellite Climate Studies Branch ywze98@umd.edu

#### Characterization

Comparison with CRTM simulations Clear sky over tropical and sub-tropical oceans (30N – 30S) Three cloud screening approaches AMSU L2 cloud products PATMOS-x (AVHRR) cloud probability ERA Interim cloud probability Stratification with SST, PW and wind speed (Emphasize of this presentation) Yearly data: N15 – 2000, 2004, 2008 N16 – 2008 N18 – 2008 (\*) MetOp-A – 2008

#### Possible Causes

Antenna pointing angle error Bias in polarization vector orientation Sidelobe effects and other hardware configuration problem Asymmetric atmosphere and surface

## Correction (next step)

Integrate the results from geolocation correction and stratification results Correct pointing angle error and bias in polarization vector orientation

#### Literature Review



Figure 1. Mean biases of simulated brightness temperatures from observed temperatures versus beam positions under clear atmosphere over oceans at (a) 23.8 GHz, (b) 31.4 GHz, (3) 50.3 GHz, and (d) 89 GHz. Note that beam positions 1–30 correspond to the ranging of the scan angle of  $-47.85^{\circ}-47.85^{\circ}$  with an increment of 3.3°. The vertical bars show the standard deviation of the biases corresponding to each beam position.

 $I = A^{2}(\theta, \psi, \varphi)I_{h} + B^{2}(\theta, \psi, \varphi)I_{v},$ 

First addressed in Weng et al. (2000) and Weng et al. (2003)

Attribute to Polarization misalignment or Antenna pointing angle error



Antenna Reflector Normal Angle
Polarization Alignment Angle
Sensor Scan Angle

#### Impact of AMSU-A Tb Asymmetry on Products



## Before Correction (02/15/2011)

# After Correction (02/15/2011)

#### **Characterization Scheme**



#### General Result of Asymmetry Characterization



# Comparison of Different Cloud-Screening Approaches



# Comparison of Different Cloud Fraction for PATMOS-x Approach



#### Comparison of Number of Observation for PATMOS-x Approach



# AMSU-A Hardware Configuration

23.8 GHz & 31.4 GHz : AMSU-A2; 50.3 GHz : AMSU-A1-2; 89.0 GHz : AMSU-A1-1



# Histogram of Physical Variables – NOAA-18, 2008

![](_page_10_Figure_1.jpeg)

# Comparison of Most Probable Values (MPV)

| AND REAL PROPERTY OF A DESCRIPTION OF A | AND CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTIONO |         |         | And a second successful to be addressed as an address |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOAA-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOAA-16 | NOAA-18 | MetOp-A                                               |
| SST (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300.15 (00)<br>301.07 (04)<br>300.48 (08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300.33  | 300.38  | 300.04                                                |
| PW (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.96 (00)<br>2.79 (04)<br>2.89 (08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.92    | 2.81    | 2.75                                                  |
| Wind Speed<br>(m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.04 (00)<br>6.14 (04)<br>6.46 (08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.62    | 5.98    | 6.08                                                  |

# Statistic of Number of Observations for Parameter Range, NOAA-18, 2008

| %     | PW (cm)                      | %                                         | WS (m/s)                                          | %                                                                |
|-------|------------------------------|-------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|
| 44 36 | < 2.5                        | 38 47                                     | < 5                                               | 41 66                                                            |
|       | 2.0                          |                                           |                                                   |                                                                  |
| 34.24 | 2.5 ~ 3.5                    | 38.12                                     | 5~7                                               | 32.93                                                            |
| 21.40 | > 3.5                        | 23.41                                     | > 7                                               | 25.41                                                            |
|       | %<br>14.36<br>34.24<br>21.40 | %       PW (cm)         44.36       < 2.5 | %       PW (cm)       %         44.36       < 2.5 | %       PW (cm)       %       WS (m/s)         44.36       < 2.5 |

### Asymmetry with Sea Surface Temperature – Window Channels, NOAA-18, 2008

![](_page_13_Figure_1.jpeg)

#### Asymmetry with Precipitable Water – Window Channels, NOAA-18, 2008

![](_page_14_Figure_1.jpeg)

# Asymmetry with Wind Speed – Window Channels, NOAA-18, 2008

![](_page_15_Figure_1.jpeg)

# 2D Histogram of Physical Variables - NOAA-18, 2008

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

# Definition of 27 Class

| C# | SST  | PW   | V   | C# | SST | PW   | V   | C# | SST  | PW   | V   |
|----|------|------|-----|----|-----|------|-----|----|------|------|-----|
| 1  | <299 | <2.5 | <5  | 10 | mid | <2.5 | <5  | 19 | >301 | <2.5 | <5  |
| 2  | <299 | <2.5 | mid | 11 | mid | <2.5 | mid | 20 | >301 | <2.5 | mid |
| 3  | <299 | <2.5 | >7  | 12 | mid | <2.5 | >7  | 21 | >301 | <2.5 | >7  |
| 4  | <299 | mid  | <5  | 13 | mid | mid  | <5  | 22 | >301 | mid  | <5  |
| 5  | <299 | mid  | mid | 14 | mid | mid  | mid | 23 | >301 | mid  | mid |
| 6  | <299 | mid  | >7  | 15 | mid | mid  | >7  | 24 | >301 | mid  | >7  |

# Histogram of 27 Class – NOAA-15

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_18_Picture_3.jpeg)

# Histogram of 27 Class – Whole Year 2008

![](_page_19_Figure_1.jpeg)

### Asymmetry with Selected Combined Cases – Window Channels, NOAA-18, 2008

![](_page_20_Figure_1.jpeg)

# Number of Observations with Selected Combined Cases, NOAA-18, 2008

![](_page_21_Figure_1.jpeg)

### Mean Difference at MPV – Window Channels, Changing SST, NOAA-18, 2008

![](_page_22_Figure_1.jpeg)

# Number of Observations at MPV – Changing SST, NOAA-18, 2008

![](_page_23_Figure_1.jpeg)

### Mean Difference at MPV – Window Channels, Changing PW, NOAA-18, 2008

![](_page_24_Figure_1.jpeg)

# Number of Observations at MPV – Changing PW, NOAA-18, 2008

![](_page_25_Figure_1.jpeg)

#### Mean Difference at MPV – Window Channels, Changing Wind Speed, NOAA-15, 2000

![](_page_26_Figure_1.jpeg)

#### Mean Difference at MPV – Window Channels, Changing Wind Speed, NOAA-15, 2004

![](_page_27_Figure_1.jpeg)

#### Mean Difference at MPV – Window Channels, Changing Wind Speed, NOAA-15, 2008

![](_page_28_Figure_1.jpeg)

60

## Mean Difference at MPV – Window Channels, NOAA-15, 2000~2008

![](_page_29_Figure_1.jpeg)

# Mean Difference at MPV – Window Channels, Changing Wind Speed, NOAA-16, 2008

![](_page_30_Figure_1.jpeg)

#### Mean Difference at MPV – Window Channels, Changing Wind Speed, NOAA-18, 2008

![](_page_31_Figure_1.jpeg)

#### Mean Difference at MPV – Window Channels, Changing Wind Speed, MetOp-A, 2008

![](_page_32_Figure_1.jpeg)

# Number of Observations at MPV – Changing Wind Speed, NOAA-15

![](_page_33_Figure_1.jpeg)

3

# Number of Observations at MPV – Changing Wind Speed, 2008

![](_page_34_Figure_1.jpeg)

# Angular Distribution, NOAA-15, 2000

![](_page_35_Figure_1.jpeg)

# Angular Distribution, NOAA-15, 2004

![](_page_36_Figure_1.jpeg)

# Angular Distribution, NOAA-15, 2008

![](_page_37_Figure_1.jpeg)

# Angular Distribution, NOAA-16, 2008

![](_page_38_Figure_1.jpeg)

# Angular Distribution, NOAA-18, 2008

![](_page_39_Figure_1.jpeg)

# Angular Distribution, MetOp-A, 2008

![](_page_40_Figure_1.jpeg)

# Angular Distribution, MetOp-A, 2008 – Fixed Number of Observations

![](_page_41_Figure_1.jpeg)

#### Angular Distribution, NOAA-18, 2008, Near Most Probable Value

![](_page_42_Figure_1.jpeg)

# Brightness Temperature, Observed and Simulated

![](_page_43_Figure_1.jpeg)

# Delta Brightness Temperature, Left - Right

![](_page_44_Figure_1.jpeg)

# Advantage of Using CRTM

- 1. Quantify both symmetric bias and asymmetric bias without introducing much extra error
- 2. Direct link between environment variables and radiance / brightness temperature Make it possible for stratification
- 3. Essential component in polarization related calculation
- 4. Essential component in double difference technique

# Asymmetry for Window Channels

![](_page_46_Figure_1.jpeg)

# Asymmetry for Sounding Channels

![](_page_47_Figure_1.jpeg)

# Brightness Temperature Difference before Adjusting Angles

![](_page_48_Figure_1.jpeg)

#### Brightness Temperature Difference after Adjusting Angles

![](_page_49_Figure_1.jpeg)

![](_page_49_Figure_2.jpeg)

#### Vicarious Cold Reference, Nadir View, All Satellites

![](_page_50_Figure_1.jpeg)

# Linear Regression Coefficients

BT(t) = BT0 + a\* t

|     | and the second se | and the second sec |          |          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| BT0 | 23.8 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.4 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.3 GHz | 89.0 GHz |
| n15 | 141.5024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146.0852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148.7607 | 146.4928 |
| n16 | 141.3595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145.7706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149.7894 | 148.1746 |
| n17 | 140.9372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145.5226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NaN      | NaN      |
| n18 | 141.4347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145.9841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148.4020 | 149.8420 |
| m02 | 140.8219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145.9652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 146.0052 | 151.6106 |
| n19 | 140.8275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145.5493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 153.6547 | 153.1574 |
| а   | 23.8 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.4 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.3 GHz | 89.0 GHz |
| n15 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0088   | 0.0145   |
| n16 | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0123   | 0.0068   |
| n17 | -0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NaN      | NaN      |
| n18 | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0509   | 0.0048   |
| m02 | 0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0706   | -0.0290  |
| n19 | 0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0293   | -0.1292  |

#### Average 2010 Vicarious Cold Reference vs. SST Diurnal Variability

![](_page_52_Figure_1.jpeg)

#### Conclusion

- 1. There is no much difference between ascending and descending nodes regarding to asymmetry But number of observation in descending node is almost half as that of ascending node The difference of number of observation mostly arise from cloud screening
- 2. The asymmetry is quite sensitive to combined physical conditions This may indicate environmental condition also have impacts on asymmetry Uncertainties might also arise from ERA-Interim data and CRTM
- 3. 31.4 GHz and 50.3 GHz asymmetries are not sensitive to sea surface temperature or precipitable water Wind speed is the most important physical variable to impact asymmetry
- 4. The asymmetry is pronounced even in a specific physical condition
- 5. The asymmetry pattern is stable through years, but quite different among on-board satellites
- 6. The mean precipitable water is not even at 30 beam positions
- 7. Sounding channels may provide sensor pointing information
- 8. How to use vicarious cold reference is still a question for us