An Update on Development of MSU/ AMSU/ SSU Sounding Channel Radiance FCDR and Upper- Air Temperature TCDR

Cheng-Zhi Zou
NOAA/NESDIS/STAR, Phone: 301- 763- 8042, email: Cheng-Zhi.Zou@noaa.gov

Development Team Members:
Wenhui Wang, Likun Wang, Haifeng Qian with help from CRTM team Yong Han, Yong Chen, NOAA/NESDIS/STAR

Science Team Members:
Carl Mears, Remote Sensing Systems; Phone: 707- 545- 2904; email: mears@sonic.net
Qiang Fu, University of Washington; 206- 685- 2070; email: qfu@atmos.washington.edu
John Woollen, NOAA/NWS/NCEP; Phone: 301- 763- 8000;
email: Jack.Woollen@noaa.gov
Sid Boukabara, NOAA/NESDIS/STAR, 301- 763- 8136; email: Sid.Boukabara@noaa.gov
Lidia Cucurull, NOAA/NESDIS/STAR; Phone: 301- 763- 8000; email: Lidia.Cucurull@noaa.gov
Dick Dee, ECMWF, Phone: (+44) 118 949 9352; email: Dick.Dee@ecmwf.int
Outline

- Overview of NOAA MSU/AMSU/SSU Atmospheric Sounding CDR Project
- Results/Accomplishments
- Validation
- Issues & Work-Off Plans
OVERVIEW-Goals for CDR Project

- Develop consistent radiance Fundamental Climate Data Record (FCDR) for MSU/AMSU/SSU sounding channels to support consistent modeling reanalysis activities and consistent satellite retrievals

- Develop consistent atmospheric temperature thematic climate data record (TCDR) for climate service support – climate change research, climate change monitoring, validating climate model simulation…
Left: Weighting functions for the MSU and SSU instruments, where the black curve represent the MSU weighting functions and the dashed and red curves are the SSU weighting functions for different time period, showing a shift due to an instrument CO₂ cell pressure change; Right: Weighting functions for AMSU-A. All weighting functions are corresponding to nadir or near-nadir observations.
OVERVIEW

- ECVs addressed
 - Upper-Air Temperature

- Current/expected user communities
 - IPCC climate assessment
 - NCDC climate report
 - Reanalysis community
 - Climate research community
 - General public engaged in global warming debate
NOAA MSU/AMSU CDR Development System

Satellite raw counts data

Level-1c calibration to generate level-1c radiances

Quality control; limb correction; diurnal correction; averaging over grid-cells

Examine inter-satellite biases from various error sources; satellite merging

Output global gridded TCDR for climate change analyses

SDR output for reanalysis data assimilation

Off-line SNO sequential procedure to determine calibration coefficients for all satellites

Provide feedback: select different calibration coefficients until biases over ocean and land reach minimum; These include adjusting root-level calibration coefficient and diurnal correction scaling factor

TCDR Output

Radiance FCDR Output
Achievements - MSU

- **Maturity Level: 80%**
 (4.8 out of 6)

- Recalibrated Radiance FCDR for MSU channels 2-4 from 1978-2006

- Developed well inter-calibrated upper-air layer temperature TCDR

- FCDR being assimilated into MERRA and CFSR reanalysis systems; improved bias correction pattern found

- TCDR being used in climate trend investigations, validating climate model simulations…

- FCDR and TCDR delivered on STAR websites

- Papers published

- Last step: ATBD need completed

- Five-day averaged, global-mean MSU-only temperature anomaly time series
Achievements--SSU

- Maturity Level: 45% (2.7 out of 6)
 - FCDR/TCDR recalibration algorithm developed, involving corrections of
 - Instrument CO2 leaking problem
 - Atmospheric CO2 variations
 - Limb-effect
 - Diurnal drift effect
 - Inter-satellite biases

- Version 1.0 TCDR to be released in two months at STAR website

- Preliminary evaluation of TCDR conducted by NCEP/CPC

- Documentation to be completed

The time series of SSU brightness temperature before recalibration/reprocessing (gray) and recalibrated CDRs (color). The different colors represent the observations from different satellites.
Achievements: AMSU-A

- **Maturity Level: channel dependent**
 - Recalibrated channels 4-10, 12, 13
 - Recalibrated radiance FCDR released on STAR website
 - Merged channels 5, 7, and 9 with respected MSU channels 2, 3, and 4 to generate MSU/AMSU-A upper-air temperature TCDR
 - MSU/AMSU-A TCDR version 2.0 released on STAR websites
 - Temperature TCDR updated every month to ‘operationally’ monitor climate change
 - Both FCDR and TCDR validated against limited GPSRO observations
 - TCDR being used for climate trend monitoring, validation of climate model simulations
 - Working on documentation

MSU/AMSU-A Global Mean (Land+Ocean) Temperature Anomaly Time Series

- Monthly anomaly time series and trends for the global mean TMT, TUT and TLS, where TMT, TUT, and TLS represent deep-layer temperatures at mid-troposphere, upper-troposphere, and lower-stratosphere.
AMSU- A Bias Classification

The following biases were identified in pre-launch calibration and were removed or minimized in our SNO recalibration effort

- Constant inter-satellite biases
- Bias drifts in most NOAA-16 channels and some MetOp-A channels
- Temperature-dependent biases in most channels on most satellites
- Sun heating induced temperature variability in NOAA-15 channel 6
- Channel frequency shift in certain channels

NOAA operational calibrated inter-satellite difference time Series; ch 5 Ocean Mean, before SNO inter-calibration

NOAA operational calibrated inter-satellite difference time Series; ch 6 Ocean Mean, before SNO inter-calibration

σ : ~ 0.1 K
SNO Method to Remove Sun-Heating Induced Instrument Temperature Variability

Nonlinear calibration

\[R = R_L - \delta R + \mu Z \]

\(R_L \) is the linear calibration term

\[R_L = R_c + S(C_e - C_c) \]

\(S \) → Slope

\[Z = S^2 (C_e - C_c)(C_e - C_w) \]

\(C_e \) - scene count
\(C_c \) – cold space count
\(C_w \) - warm target raw count
SNO Method to Remove Scene Temperature-Dependent Biases

Before recalibration

After recalibration

SNOs between NOAA-18 and MetOp-A, channel 6
SNO Method to Remove Biases Caused by Channel Frequency Shift

SNOs between NOAA-18 and NOAA-15, channel 6
SNO inter-calibrated AMSU-A Observations
Validation — GPSRO vs SNO recalibrated MSU/ AMSU products

Scattering plots of 10 x10 degree binned TLS from 200106 to 200812

From Ben Ho of NCAR, NOAA CDR Workshop, Silver Spring, Maryland
March 22-24
Validation — GPSRO vs SNO recalibrated AMSU Radiances, channel 9

SNO calibration

NOAA Operational Calibration

Slides courtesy of W. He from IAP of China
Validation — GPSRO vs SNO recalibrated AMSU Radiances, channel 9

Global comparisons in 7 consecutive days from 2007/7/1 to 2007/7/7

Slide courtesy of W. He from IAP of China
Five-year trends comparisons between different homogenized RAOB analysis and different satellite datasets. Note STAR dataset is closest to RAOB trends for ALL different RAOB analysis in terms of RMS. Plot and table from Mears (2011).
Recalibrated MSU level-1c data were assimilated into NCEP CFSR and NASA MERRA reanalysis systems.

Bias correction pattern for recalibrated MSU data are much smoother, since instrument errors were removed before assimilation.

Need to adjust the absolute values of the recalibrated MSU/AMSU data so that the absolute value of the bias correction is close to zero.

MSU Channel 2 bias correction patterns in NCEP CFSR reanalysis from 1978-2007. Recalibrated MSU data after 1987 were assimilated into CFSR (plot from Saha et al. 2010).
NASA MERRA vs ERA-Interium

Global mean 12-hourly variational bias estimates (K) for MSU channel 2 radiance data from NOAA-10, NOAA-11, NOAA-12, and NOAA-14. The upper panel is from ERA-Interim and the lower panel is from MERRA. The latter uses the NOAA/STAR SNO cross-calibrated MSU data. (Plot from Dee 2010)
Data Archive and Download

Website address: http://www.orbit.nesdis.noaa.gov/smcd/emb/mscat/mscatmain.htm

Datasets for public access:

- Level -1c calibration coefficients
- Level -1c radiance:
 - SNO calibrated
 - pre-launch (operationally) calibrated
- Level 3 gridded products: 2.5°×2.5°
 - MSU/AMSU merged pentad and monthly TMT, TTS, and TLS
Issues & Work-Off Plans

Issues
- No microwave SI-traceable standards for absolute validation
- Only two PRTs on MSU, thermal gradient problem may never be solved. AMSU maybe OK
- Difficult to use SNO to resolve higher order nonlinearity than quadratic
- Channel failures affect accuracy (e.g., N15 channels 4, 11, 14)

Work-Off Plans
- Use best practice inter-calibration algorithms to produce multiple identical satellite observations
- Implement comprehensive validation/comparison plans
Thank You!