NOAA GPM Workshop Breakout: Accelerating the Use of GPM Data

Thursday, 19 August 2010

3rd Floor Class Room

Partcipants

- Tim Schneider (lead)
- Sheldon Kusselson
- Steve Goodman
- Glenn White
- Dongsoo Kim
- Mike Bodner
- Rob Cifelli (rapporteur)
- Pingping Xie
- Chris Miller

Objectives & Outcomes

Objectives

- To identify data requirements, gaps and needs; mechanisms and processes; testing and evaluation; training; engage users
- What are "our" barriers to using the data?

Desired Outcomes

- To enable NOAA (broadly) to use GPM data to conduct research and to provide improved weather and water products and services
- A plan that identifies a NOAA process to enhance and accelerate the use of GPM data.

Key Questions

- I. What Cal/Val (sensors/algorithms) is needed?
 - Build confidence in the data/information
- II. What do we need to do to prepare NOAA's infrastructure
 - To handle the data?
 - E.g. Routing data
 - For research and development and application
- III. What R&D is needed?
 - E.g. we need to estimate biases between GPM and existing satellite precip products
- IV. What is the role of testbeds/proving grounds?
 - How do we optimally use and coordinate them?
- V. How do we transition and deliver science products and services?
- VI. How do we integrate GPM data with other "systems"?
 - E.g. CMORPH; MPE; Q2; etc.
 - Assimilation
 - How does GPM complement (fill gaps) other satellite data used by NOAA to produce precipitation products?
 - What is the optimal use of GPM data
- VII. What are our funding & resource gaps?
- VIII. What training is needed?
 - How to develop and deliver it?
 - Role of COMET?

- I. What Cal/Val (sensors/algorithms) is needed?
 - 1. Build confidence in the data/information
 - 2. NOAA-NASA Workshops (esp. user workshops)
 - NOAA focused effort needed
 - 4. Form NOAA working groups

- II. What do we need to do to prepare NOAA's infrastructure: to handle the data (e.g. Routing data); also for research and development and application
 - Clear understanding data pathway (NASA->NOAA) and NOAA archival
 - 1. opportunity for users to comment
 - 2. Meta data is needed
 - 1. Algorithms/products need to state uncertainty, "limitations", references
 - 3. Is model physics optimal for assimilation GPM data?
 - 4. New NOAA-NASA infrastructure at the Joint Center could be utilized/coord needed for GPM
 - 5. What Physics do we need (NWP) e.g. Cloud microphysics
 - 6. Reduce latency over conus

III. What R&D is needed?

- 1. we need to estimate biases between GPM and existing satellite precip products)
- How do we use existing research efforts (e.g. NASA-CSU WRF effort);
 see testbed (#4)
- 3. Impact of GPM on reanalysis efforts
 - 1. seasonal forecasts & climate apps
 - 2. regional variability (over differ. Spatial scales)
 - 3. errors
- 4. Best way to integrate the GPM data for a long-term precipitation record (consistency; scaling issues)
 - 1. Use for developing sparse network records (from gages)
- 5. Multi-sensor/multi platform products (QPE, now-casting, QPF)
- 6. Algorithms beyond precip (e.g. clouds, moisture)...
- 7. Assimilation (e.g. JCSDA)
- 8. R&D considering broad applications (e.g. aviation, high impact weather)
- 9. Tap academic and Cis (grants)

- IV. What is the role of testbeds/proving grounds? How do we optimally use and coordinate them?
 - 1. Rec: USWRP facilitates coordination between testbeds and GPM
 - 1. Strategy to approach and engage is needed
 - 2. Testbeds provide relevant feedback to GPM program
 - 1. Testbeds need to identify liaison to GPM program
 - 3. JCSDA and DTC can help with NWP and Assimilation
 - 4. HMT
 - 5. JHT
 - 6. HWT
 - 7. GOES-R Proving Ground
 - 8. CTB
 - 9. Aviation testbed; SPoRT; others?
 - 10. Context: climate, weather and water

- V. How do we transition and deliver science products and services?
 - 1. Need for efficient implementation with feedback from stakeholders/users
 - 2. Open and transparent data availability (due consideration of timeliness, etc.)
 - 3. Data availability in different display and dissemination systems (AWIPS, NAWIPS lesson of GOES data in AWIPS)

- VI. How do we integrate GPM data with other "systems"?
 - Need long-term strategy to intetrate GPM into a (unified/cosolidated) suite of products
 - 2. E.g. CMORPH; MPE; Q2; etc.
 - 3. Assimilation
 - 4. How does GPM complement (fill gaps) other satellite data used by NOAA to produce precipitation products?
 - 1. What is the optimal use of GPM data

VII. What are our funding & resource gaps?

- 1. "Ubiquitous and massive" ;-)
- Like the HFIP model: can GPM address a grand weather and water challenge questions
- 3. R. Ferarro: identify small things, low hanging fruit to invest in early
- 4. Current funding is spotty and limited (sat alg testbed; sat proving ground; Berchoff's proving ground frcst office of the future)
- 5. NOAA needs to fund the 'whole enchilada'
 - Need to support the end-to-end process: development, sensor, assimilation, QC, applications; cal/val etc. (like NASA); engages users & developers
 - 2. "base funding" inadequate (see spotty above)
 - Bridge funding is virtually non-existent (like GOES-R risk reduction has)
 - 4. External support

VIII.What training is needed?

- 1. YES!
- 2. How to develop and deliver it?
- 3. Role of COMET? Probably a good idea
- 4. GOES-R has a couple of good examples (JPSS adopting this model)
 - 1. Product developer develops training for and interacts directly with the users.
 - 2. Training modules available from the NOAA Learning Center
 - 3. Users ('applier') train the developer (feedback loop between developer and user; two way street; co-creation)
- 5. R2O ⇔ O2R (O2R2O2R...)