Global Precipitation Measurement Science Status

Arthur Hou, Gail Skofronick Jackson NASA Goddard Space Flight Center

GPM Mission Concept

 Coordinated precipitation measurements by a constellation of microwave sensors to achieve global sampling and coverage through partnerships.

The GPM Core is specifically designed to:

- Set a new reference standard for precipitation measurements from space
- Provide a transfer standard to unify and improve precipitation estimates from passive microwave radiometers

2nd NOAA User Workshop on the GPM Mission November 29, 2011

Baseline GPM Constellation of Satellites

NPP (NASA/NOAA)

MetOp B/C

(EUMETSAT)

JPSS-1 (*NASA/NOAA*)

DMSP F19/F20

(DOD)

GPM Core Observatory (NASA/JAXA, 2014)

> Megha-Tropiques (CNES/ISRO)

> > NOAA 19 (NOAA)

GCOM-W1 (*JAXA*, 2012)

Next-generation global precipitation products for research & applications

G. Skofronick Jackson, 2nd NOAA User Workshop on the GPM Mission, Nov 29, 2011, College Park, MD

Core Observatory Measurement Capabilities

Dual-Frequency (Ku-Ka band) *Precipitation Radar (DPR):*

- Increased sensitivity (~12 dBZ) for light rain and snow detection relative to TRMM
- Better measurement accuracy with differential attenuation correction
- Detailed microphysical information (DSD mean mass diameter & particle no. density) & identification of liquid, ice, and mixed-phase regions

Multi-Channel (10-183 GHz) GPM Microwave Imager (GMI):

- *Higher spatial resolution (IFOV: 6-26 km)*
- Improved light rain & snow detection
- Improved signals of solid precipitation over land (especially over snow- covered surfaces) *Combined Radar-Radiometer Retrieval*
- 4-point calibration to serve as a radiometric reference for constellation radiometers

- DPR & GMI together provide greater constraints on possible solutions to improve retrieval accuracy
- Observation-based a-priori cloud database for constellation radiometer retrievals

GPM Next Generation Precipitation Products

- 1) Intercalibrate constellation *brightness temperature* data with sensor differences reconciled using the non-Sun-synchronous Core satellite as a transfer standard.
- 2) Unify *precipitation* retrievals using a common hydrometeor database constructed from combined DPR+GMI measurements

Radiometer precipitation retrievals use a Bayesian database

TRMM's database from cloud models Simulated T_b, Z, & RR

TRMM: Cloud resolving model simulations to database T_b and Z via forward radiative transfer model calculations.

GPM's database from DPR+GMI obs. Observed T_b, Z, & combined retrievals

G. Skofronick Jackson, 2nd NOAA User Workshop on the GPM Mission, Nov 29, 2011, College Park, MD

GPM Mission Status

- GPM is in (Phase C) implementation at NASA and JAXA
 - Two agencies have signed a Memorandum Of Understanding on GPM cooperation
 - Launch readiness date: Feb 2014
 - NASA Precipitation Processing System (PPS) completed Build 3 Review and is currently producing prototype intercalibrated L1C products for TMI, SSMI, AMSR-E, SSMIS, & WindSat and L3 NRT merged global precipitation products using TMI, SSMI, AMSR-E, AMSU, and MetOp data.
- NASA and CNES, and NASA and ISRO have bi-lateral Implementing Agreements to formalize the participation of Megha-Tropiques in GPM
- The NASA-NOAA Inter-agency Agreement on GPM cooperation is in review
- NASA and EUMETSAT are in discussion to develop a formal agreement on GPM
- NASA and AEB have signed a Cooperative Agreement on GPM Scientific Collaboration in Oct. 2011.
- NASA PMM Science Team is on track to deliver GPM L2 and L3 baseline algorithm codes to PPS and MOS at end of Nov. 2011.
- NASA is conducting a series of GPM ground validation campaigns in cooperation with domestic and international partners.

Ground Validation: MC3E (April 22 – June 6, 2011)

- 70 ER-2 and 45 Citation flight hours including 8 ER-2/Citation coordinated missions
- 3 ER-2 emissivity missions
- Continuous sampling by 5-7 ground radars
- Launch of ~1200 radiosondes

Citation microphysics and cloud missions

G. Skofronick Jackson, 2nd NOAA User Workshop on the GPM Mission, Nov 29, 2011, College Park, MD

MC3E Algorithm-GV Traceability Matrix

Algorithm issues or	Applicable Measured and/or Diagnosed Parameters																
assumptions		Z		PSD sfc	PSD col	PID					Q _{soil}	CN CCN	TW _c	CW		ϵ/σ_{sfc}	T _t
Path integrated attenuation approach(es)	٠	•	٠	•	•	•				٠			•	•		•	
Hydrometeor Identification (3D)	٠	•	٠	•	•	•	٠		٠				•	•	•		
Hydrometeor melting model	٠	٠			٠	٠	٠	٠	٠				٠		٠	٠	٠
Melting layer identification	٠	•			•	•			٠						•		
Convective/Stratiform partitioning	٠	•	٠	•	•	•											•
Dual-Frequency rain rate retrieval	٠	•	٠	•	•	•										•	
Near surface rain estimate/rain profile	٠	•	٠	•	•	•										•	
Sub-pixel DSD and rain variability (correlation, errors, beam filling)	٠	•	٠	•	•	•											•
DSD profile and "e" adjustments	٠	•	٠	•	•	•											•
Column/Land surface emission			٠						٠	+	•					•	•
Rain/no rain discrimination	٠	•	٠	•	•	•			٠	٠			•	•	•	•	•
Ice particle vs. volume extinction	٠	•			•	•	٠	٠	٠	٠					•		•
Cloud water profiles	٠	•	٠						٠	٠		•	•	•	•		•
Ice process, scattering, and rainfall	٠	•	٠	•	•	•	٠	٠					•	•	•		•
Regime controls on precipitation process	٠	•	٠	•	•	•	٠	٠	•	•		•	•	•	•	•	•
DSD Gamma-Triplet correlations	٠	•	٠	•	•	•							•				
CRM/LSM Satellite Simulator Physics	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•

MC3E GV measurements			Applicable Measured and/or Diagnosed Parameters																
Instruments		Measurable		Z DFR	R	PSD sfc	PSD col	PID					Q _{soit}	CN, CCN	TWc	CW			T _B
Ground Radar and Profiler	NPOL, DOE S/C/X Dual-Pol	Z, Vr, W, ZDR, Φ _{DP} , ρ _{bv} , LDR	×		×	×	×	×											
	D3R Ka/Ku Dual-Pol	Z, Vr, DFR, W, ZDR, Φ _{DP} , ρ _{Inv} , LDR	\boxtimes	\boxtimes	\boxtimes	\boxtimes	×	\boxtimes											
	S/UHF Profiling	Z, Vr, W	X		\mathbf{X}	×	×	\times											
	MRR K-band Profiling	Z, Vr, W	\boxtimes		\mathbf{X}	×	X	×											
	Ka/W-band Radar	Spectra (Z, Vr)	\boxtimes		\boxtimes	×										X			X
Ground Gauge and Radiometer	2DVD/Parsivel Array	DSD, shape, fall spd	\boxtimes		\boxtimes	×		×											
	Rain gauge array	Rain rate/accum			X														
	Sounding Array	P, T, RH, wind									\mathbf{X}	×							
	ADMIRARI Radiometer, MRR	T _B 19, 37 Z 24 GHz	\boxtimes		\boxtimes											×			
	DOE/OK Surface Inst.	P,T,RH, soil moisture and aerosols			\boxtimes						\boxtimes	×	\boxtimes	\boxtimes					
	AERI Radiometers	T/RH Profile									\times	×							
	DOE Flux tower	Eddy fluxes (T,q,u)									×	×							
Aircraft	HIWRAP (Ka/Ku Radar)	Z, Vr, DFR, W, ZDR, Φ _{DP} , ρ _{hv} , LDR	×	\boxtimes	×		×	\boxtimes											
	CoSMIR (Radiometer)	T _B 37,89, 165.5,183 H/V															\boxtimes	×	×
	AMPR (Radiometer)	T _B 10,19,37,85 H/V															\mathbf{X}	X	\mathbf{X}
	2D-C/CIP/2D-P, HVPS	Precip. Image	\mathbf{X}		X		×	\mathbf{X}	\mathbf{X}	\mathbf{X}					×		\mathbf{X}		
	CDP	Cloud Water/Spectra														\mathbf{X}			
	Nevzorov	Total water							\mathbf{X}						×	×	×		
	King Probe	Cloud water bulk														×			
	Rosemount Icing Probe	Supercooled water														×			
	CN/UHSAS	Aerosol spectra												×					
	MAPIR Radiometer	T _B 1.4 GHz H/V									\mathbf{X}		×						

Improving physical parameters in retrieval algorithms using MC3E campaign measurements

Ground Validation

- LPVEx (Sept 15 Dec 21, 2010):
 - Data review workshop in Helsinki, Oct 13-14, 2011.

- Fully quality-controlled data release: Dec. 2011. Emphasis on full microphysical and radiometric definition of light-precipitation column and melting layer models.

- GCPEX (Jan 17 Feb 28, 2012):
 - Ground instrumentation installation underway at and around the EC CARE sites.
- Partnership with NOAA National Mosaic QPE (NMQ) project:
 - GPM radiometer retrieval database development using 3D radar/rain data.
 - NMQ data also being used to characterize uncertainties in satellite precip. products.
- Future campaigns under consideration:
 - Large-scale Flood Testbed in Iowa: Target date 2013.
 - Orographically-enhance Convection Testbed in the SE U.S.: Target date 2014
 - Semi-Arid Monsoon Testbed in the SW U.S. (possibly jointly with SMAP)
 - Snow/Rain Testbed on Olympic Peninsula: OLYMPEX campaign (post-launch)

Precipitation GV Science Research Facility at NASA/WFF

• Approach: Dense long-term gauge/disdrometer network under radar coverage

- Stage 1: Dense gauge network and multi-parameter/frequency radars
- 25 gauge pairs, 5 x 5 km² area. Total inventory 70+ TB rain gauges
- 4 existing locations with gauge pairs along the Eastern Shore (range studies)
- NPOL (S-band), SPANDAR (S-band), WSR-88D (S-band), TOGA (C-band), D3R (Ka-Ku band) quantify radar reference accuracy as f(scale, measurement type);
- Stage 2: 20+ disdrometers, 5 2DVDs, 20+ Parsivel, ~4 Joss; DSD variability studies +6 MRR's
- Addressing precipitation regime diversity via partnerships and collaboration:
- Coastal land/oceanic and seasonal regime gradients;- long term observations between IOPs
- Leverage partnering activities to expand regimes; e.g., Iowa Flood Center, HyMeX, S. Korea

GPM Near Real-time Data Products

• GMI L1 and L2 swath products within 20 min. of data collection

- Selected DPR L2 (e.g., reflectivity and precipitation rate) swath products within 120 min. of data collection
- Combined GMI and DPR L2 swath products within 120 min. of data collection
- L1C intercalibrated brightness temperature swath products and L2 GPROF precipitation products for partner radiometers within 10 min. of receiving L1B data from data providers
- L3 merged MW+IR, 0.1° x 0.1° gridded, half-hourly global precipitation products:
 - Low-latency, quick-look products (with relatively high IR data content) near data collection time
 - Late-look products with all available MW data within the collection window

Summary

GPM is an international satellite mission that will unify and advance precipitation measurements from a constellation of microwave sensors for research and application.

- Advanced active/passive sensor capabilities
 - Higher sensitivity to light rain and solid precipitation than TRMM instruments
 - Insights into precipitation physics with quantitative estimates of PSD parameters
- Next-generation uniform global precipitation data products
 - Inter-calibrated radiometric data from a constellation of MW sensors
 - Unified precipitation retrieval using a common hydrometeor database consistent with combined active/passive sensor measurements
- Near real-time data for operational use and societal applications
- Ground validation is key to refining algorithm assumptions & parameters and characterization of uncertainties in precipitation estimates for improving GPM data products and data utilization:
 - Conducting a series of focused GV field campaigns in collaboration with domestic and international partners to improve GPM satellite algorithms
 - Establishing GV research facilities to characterize uncertainties in satellite and groundbased precipitation estimates to improve understanding error propagation from inputs to forecasts of hydrological models.

URL: pmm.nasa.gov or gpm.nasa.gov