Workshop on Hyperspectral Sensor Greenhouse Gas (GHG) and Atmospheric Soundings from Environmental Satellites, Miami 29.-31.3.2011

Europe's plans and activities w.r.t. GHG satellite remote sensing – Sentinel 5 P and 5, CarbonSat, MERLIN

<u>H. Bovensmann</u>, M.Buchwitz, John P. Burrows University of Bremen, Institute of Environmental Physics

With contributions from

P. Ingmann, ESA P. Veefkind, KNMI J. Landgraf, SRON G. Ehret, DLR M. Heimann, J. Marshal, MPI BGC Jena

Europes Earth Observation Missions

Global Monitoring for Environment and Security (GMES)

The European contribution to GEOSS

Services Component – led by EC

- Produces information services in response to European policy priorities in environment and security
- Relies on data from in-situ and space component

In-situ component – led by EEA

 Observations mostly within national responsibility, with coordination at European level

Space Component – led by ESA

- Sentinels EO missions developed specifically for GMES
- Contributing Missions EO missions built for purposes other than GMES but offering part of their capacity to GMES

GMES Atmosphere Space Component

- Atmospheric composition requirements for an operational mission have been defined based on in-depth analysis (CAPACITY, CAMELOT etc.)
- Two complementary implementation components have been identified, namely
 - Sentinel-4, i.e. the GEO related component, will get implemented as a UVN instrument added to the MTG sounder satellites also emaking use of the IR sounder and MTG imager capabilities
 - Sentinel-5, i.e. the LEO related component, will get implemented as a UVNS instrument added to the Post-EPS satellites making use of the combined meteorology-chemistry IR sounder, the multi-spectral imager and the polarisation imager if implemented to meet the S-5 requirements To avoid a data gap a Sentinel-5 Precursor will get implemented on a dedicated platform making use of NPP/VIIRS

Sentinel-5 Precursor

GMES ATMOSPHERE MISSION IN POLAR ORBIT

- The ESA Sentinel-5 Precursor (S-5P) is a pre-operational mission focussing on global observations of the atmospheric composition for air quality and climate.
- The TROPOspheric Monitoring Instrument (TROPOMI) is the payload of the S-5P mission and is jointly developed by The Netherlands and ESA.
- The planned launch date for S-5P is late 2014 with a 7 year design lifetime.

Sentinel 5 Precursor

- UV-VIS-NIR-SWIR nadir view grating spectrometer.
- Spectral range: 270-500, 675-775, 2305-2385 nm
- Spectral Resolution: 0.25-1.1 nm
- Spatial Resolution: 7x7km²

ersität Bremen

Global daily coverage at 13:30 local solar time.

CONTRIBUTION TO GMES

- Total column O₃, NO₂, CO, SO₂, CH₄, CH₂O, H₂O, BrO
- Tropospheric column O₃, NO₂
- •O₃ profile
- Aerosol absorbing index, type, optical depth

S5P SWIR 2.3 µm band

Expected Performance of S5-P for CH4

Method: retrieve aerosol/cirrus amount, size, and height together with CH4 (and CO, H2O and surface albedo)

- use VIIRS to select scenes that are free of thick clouds.
- Retrieval employs measurements at the O2 A and and the SWIR 2.3 µm band.
- Goal: 1% error

versität Bremen

Sentinel-5: LEO atmospheric mission

Applications:

- air quality, climate forcing and stratospheric ozone
 Instrumentation:
- UV-VIS-NIR-SWIR spectrometer (UVNS)
- UV-Visible (270-500nm), NIR (685-775nm) and SWIR (1590–1675nm; 2305-2385nm)
- push-broom grating spectrometer with spectral resolution between 0.4 nm and 1.0 nm

- Spatial sampling with 50 (T)/15 (G) km < 300nm and 15 (T)/5(G) km > 300 nm
- Global daily coverage
- sun-synchronous Low Earth Orbit at 824 km mean altitude
- Sentinel-5 embarked on post-EPS, operated by EUMETSAT
- Use of PostEPS thermal IR sounder and imager
- Launch > 2018

Sentinel 5 Precursor and Sentinel 5

		Sentinel 5P	Sentinel 5
CH ₄	Spectral range [nm]	2305-2385	1590–1675 (2305-2385)
	spectral resolution [nm]	0.25	0.25
	XCH4 precision & accuracy	1% :: 2%	< 1%
CO ₂	Spectral range [nm]	-	1590–1675 1940–2030 (lower priority)
	spectral resolution [nm]	-	0.25
	XCO2 precision & accuracy [ppm]	-	tbd
СО	Spectral range [nm]	2305-2385	2305-2385
	spectral resolution [nm]	0.25	0.25
	CO precision :: accuracy	10% : : 15%	10% : : 15%
Spatial Resolution	[km] x [km]	7 x 7	15 (T)/5(G)
Swath	[km]	2600	~2600
Local Time		13:30	Morning orbit

ESA Earth Explorer 8 Candidate Mission

CarbonSat Proposal Team

Core Team			
H. Bovensmann, M. Buchwitz, J.P. Burrows, K. Gerilwoski, T. Krings, J. Notholt M. Reuter, Univ. Bremen, Germany	F.M. Breon, CEA/DSM/LSCE, Gif sur Yvette, France H. Boesch, P.S. Monks, Space Centre, University of		
 P.Bergamaschi, Climate Change Unit, Institute for Environment and Sustainability (IES), European Commission Joint Research Centre, Ispra, Italy M. Heimann, MPI BGC, Jena, Germany T. Trautmann, DLR IMF, Oberpfaffenhofen, Germany S. Quegan, University of Sheffield, UK P. Rayner, LSCE/IPSL , CEA de Saclay, France 	 D. Crisp, JPL, Pasadena, USA H.J. Dittus, DLR IRS, Bremen, Germany J. Erzinger, GFZ Potsdam, Germany G. Ehret, DLR IPA, Oberpfaffenhofen, Germany R. Harding, NERC, Centre for Ecology and Hydrology (CEH), UK Technical support from OHB-System AG for defining the overall Satellite System and Spacecraft bus, and Kayer-Threde for defining the Satellite Payload is kindly acknowledged. 		
Science and D	ata User Team		
J. Achache, GEO Secretariat, Geneva,, Switzerland G. R. Asrar, WMO WCRP, Geneva, Switzerland B. Buchmann, D. Brunner, EMPA, CH J. Canadell, CSIRO Marine and Atmospheric Research, Australia F. Chevalier, LSCE, France P. Ciais, LSCE, France U. Cortesi, IFAC, Italy P. J. Crutzen, MPI C Mainz, Germany J.R. Drummond, Dalhousie University, Halifax, Canada C.Gerbig, MPI BGC, Jena, Germany K. Gurney, Purdue Univ, US C. Frankenberg, JPL Pasadena, USA J. Fischer, FU Berlin, Germany	S. DelBianco, IFAC, Italy S. Maksyutov, NIES, Japan T. Oda, NIES Japan A. Richter, Univ. of Bremen, Germany I. Leifer, Univ of St. Barbara, USA S. Houweling SRON, Utrecht, The Netherlands C. Miller JPL, Pasadena, USA USA M. Scholze, University of Bristol, UK E.J. Llewellyn, University of Saskatchewan, Canada R. Martin, Dalhousie University, Halifax, Canada R. Ravishankara, ESRL NOAA, Boulder USA, O. Tarasova, WMO, M. Voß RWE, Essen, Germany		

Interested? Please contact:

Universität Bre

Heinrich.Bovensmann@iup.physik.uni-bremen.de

CO₂ and CH₄ are driving global warming

How much is emitted where, when

and by what?

Are the reported Emissions

correct?

Radiative forcing: CO_2 accounts for ~ 60% CH_4 accounts for ~ 20%

How much CO_2 is absorbed by forests and oceans? (Sinks)

Are the reported sinks correct?

How today's CO₂ sinks will behave in a changing climate? Will they turn into sources?

How todays sources and sinks will behave in a changing climate?

Relevant Scales

Max-Planck-Institut für Biogeochemie

Carbon Balance of Europe

ecosystem CO₂ flux 2000-2004

sd.

av.

Error on ecosystem CO₂ flux

E. D. Schulze, NGEO, 2009

niversität Bremen

Fossil fuel emission of continental Europe $(g CO_2 m^{-2} yr^{-1})$ 0-1 1-5 5-10 10-50

Anthropogenic CO₂ emissions

0 10 20 30 40 50
MtCO₂/year
CarbonSat single overpass detection limit 4 MtCO₂/year (u = 4 m/s)
CarbonSat single overpass detection limit 1 MtCO₂/year (u = 1 m/s)
versität Bremen

Methane Hot Spots

XCH₄ retrieval precision = 8 ppb (0.5%):

CH₄ emission statistical error (1-sigma): 3-8 ktCH₄/yr (u=2-6 m/s)

Anthropogenic CH₄ emissions (2005)

Bovensmann et al. AMT, 2010

Overarching Goal: Determine GHG Fluxes by atmospheric measurements (ground based and satellite) & Inverse Modelling

Result: True regional GHG fluxes (here CH4) through minimizing the distance between measurement and simulation

Measurement Concept Passive: Absorption Spectroscopy (basic concept proven by SCIAMACHY)

CarbonSat EE8 scientific (& societal) objectives

- To quantify magnitudes and spatial and temporal distributions of CO₂ and CH₄ sources and sinks from regional to suburban scales.
- To identify the CO₂ uptake mechanisms of the terrestrial biosphere and oceans.
- To determine the response of CO₂ and CH₄ sources and sinks to a changing climate.
- To assess potential contributions to treaty verification of UNFCCC and post-Copenhagen agreements
- CarbonSat aims to better separate biogenic and atnhropogenic fluxes by "imaging" strong localised CO₂ and CH₄ emissions.

CarbonSat Mission Requirements Overview		
Parameter	Description	
Parameter Main geophysical data products	Description Level 2: Column-averaged mixing ratios of carbon dioxide (CO ₂) and methane (CH ₄) at ground-pixel resolution: XCO ₂ : Precision: < 1 ppm (threshold < 3 ppm = 0.8%) XCH ₄ : Precision: < 10 ppb (threshold < 18 ppb =1%) Level 3: XCO ₂ maps (e.g., monthly at 0.5°x0.5°) XCH ₄ maps (e.g., monthly at 0.5°x0.5°) The required relative accuracy for monthly averages at 500 x 500 km ² resolution is: XCO ₂ : < 1 ppm (threshold < 2 ppm = 0.5%) XCH ₄ : < 10 ppb (threshold < 18 ppb = 1%) Level 4: • Regional CO ₂ surface fluxes: Precision weekly fluxes @ 500 x 500 km ² in gC/m ² /day: < 1 (goal), < 2 (threshold) • Regional CH ₄ surface fluxes: Precision weekly fluxes @ 500 x 500 km ² in mgCH ₄ /m ² /day: < 10 (goal), < 20 (threshold) • CO ₂ hotspot emissions (e.g., power plant emissions): Precision single overpass (MtCO ₂ /yr): < 4 (goal), < 8 (threshold)	
	 CH₄ hotspot emissions (e.g., geological sources): Precision single overpass (ktCH₄/yr): < 4 (goal), < 8 (threshold) 	

CarbonSat mission requirements

- Based on lessons learned from SCIA, OCO, GOSAT
- Single measurement error
 - XCO₂ < 1-3 ppm
 - XCH₄: < 8-18 ppb
- Orbit: LEO polar-sun-sync, early afternoon, with NPOESS
- High spatial resolution and coverage:
 - 2x2 km² ground pixel
 - 500 km swath width
- Spectrometer for O₂, CO₂ and CH₄ absorption bands around 765 nm, 1.6 µm, and 2.0 µm
- cloud/aerosol imager
- nadir imaging (main mode), glint mode, calibration modes
- 5-7 years mission lifetime

CarbonSat Number of Clear-Sky Observations				
Instrument	Spatial resolution [km²]	Total number observations per day	Clear-sky frequency	Total number clear-sky observations per day
CarbonSat	4	28,000,000	23%	6,440,000
000	3	1,680,000	27%	453,600
GOSAT	85	10,000	13%	1,300
SCIAMACHY	1800	70,000	5%	3,500

Table 1: Estimate of CarbonSat's number of total and clear-sky observations per day compared to other missions.

Req.: Spectral bands, resolution & sampling

CarbonSat Imaging Spectrometer			
Band	Spectral range	Resolution	SNR [-]
	[nm]	[nm]	(A=0.1, SZA=50°, t _{int} =0.3s)
NIR	757 - 775	< 0.03 (< 0.045)	> 500 (> 250)
SWIR-1	1559 - 1675	< 0.15 (<0.35)	> 600 (> 300)
SWIR-2	2043 - 2095	< 0.1 (< 0.125)	> 300 (> 120)

CarbonSat - Spatial resolution & coverage

CarbonSat spatial resolution and coverage enables new important application areas: CO₂ and CH₄ emission "hot spot" detection/monitoring

Power Plant CO₂ Emission Uncertainties

Inverse plume modelling using airborne data shows that power plant emissions can be derived with an error < 5%, Krings et al in preparation

Bovensmann et al. AMT, 2010

Systematic error:

 $0.22 \text{ MtCO}_2/\text{yr}$

Example: CO₂ from a power plant (coal): Airborne vs. CarbonSat

Global Methane Budget

	e s timate	Range of estimates	IPCC 2007	r
Identified Methane Source	Mt CH4/yr	Mt CH4/yr	Mt CH4/yr	source characteristic
total wetlands	145	92 - 237		mainly natural, extended sources
rice agriculture	60	40 - 100		anthropogenic, extended sources
ruminant animals	93	80 - 115		anthropogenic, extended sources
termites	20	20 - 20		natural extended source
biomass burning	52	23 - 55		mainly anthropogenic, extended source
energy generation (coal, gas, oil)	95	75 - 110		anthropogenic, localised source
landfills	50	35 - 73		anthropogenic, localised source
Ocean	10	5 - 15		natural extended source
Hydrates (marine & terrestiral)	5	5 - 10		natural, partly localised source
geological (Etopie et al. 2008)	53	42 - 64		natural, partly localised source
Total identified sources	583	500 - 600	582	
identified methane sinks				
tropospheric oxidation	507	450 - 510		
stratopsheric loss	40	40 - 46		
soils	30	10 - 44		
total identified sinks	577	460 - 580	581	
Love et al 2006, updated w.r.t. IF	Love et al 2006, updated w.r.t. IPCC 2007 and Etopie et al. 2008			
Total sources-sinks	-47	-80 to + 140	1	

CarbonSat: CH₄ emission hot spot targets

Oil and gas fields

Pipelines incl. compressor stations

Landfills / Waste

Mud volcanoes

Seeps

CarbonSat: Methane hot spot emission targets

Target must produce a detectable methane column enhancement at 2x2 km² resolution: => Single overpass detection limit is **4 - 8 ktCH4/year** (u = 2 - 6 m/s, precision 8 ppb)

Methane hot spot targets	Comparison with CarbonSat detection limit	
Pipelines incl. compressor stations	Under certain conditions detection may be possible even at GOSAT resolution of 10 km (estimated GOSAT detection limit 11 ktCH4/year ($u = 1 \text{ m/s}$, 4 ppb) (Inoue et al., 2009); leaks in eastern Europe found to be up to 29 ktCH4/year	
Oil and gas fields	E.g. western siberian gas fields (Yamal, south of Kara sea) Jagovkina et al., 2000 (500 ppb above background below 500 m = approx. 2% column enhancement) or Prudhoe Bay, northern Alaska (unpublished ARCTAS DC-8 March 2008 results: CH_4 columns enhanced by about 5% along several km)	
Landfills	Many landfills emit more than 10 ktCH4/year (e.g., European Pollutant Release and Transfer Register)	
Mud volcanoes	Under certain conditions (e.g., eruption) detection may be possible even at SCIAMACHY resolution of $30x60 \text{ km}^2$ (Kourtidis et al., 2006)	
Seeps	Several, e.g. Coal Oil Point (COP) marine seeps, Santa Barbara, California (Leifer et al, 2006): about 25 ktCH4/year (1.15 m ³ /s) or Georgia Black Sea seeps (Judd et al., 2004): about 40 ktCH4/year	
Other	Potentially many other more or less localized targets such East Siberian Arctic Shelf (ESAS): up to +8 ppm over Laptev Sea along > 100 km (Shakhova et al., 2010)	
See Bovensmann et al., AMT, 2010		

CarbonSat spectrometer (Kayser Threde)

Parameter	Value / Description
Orbit height	828km
Field of view	35°
Swath	500km
SSD	2km x 2km (at nadir)
Polarisation handling	Polarisation scrambler
Spectrometer slit size	54 µm x 13.5 mm
Spectral bands: NIR SW1 SW2	[nm] 757-775 1,559-1,675 2,043-2,095
Spectral resolution NIR SW1 SW2	0.045 nm, 3 pixels 0.35 nm, 3 pixels 0.125nm, 3 pixels
Calibration accuracy	< 1.5 %
Polarisation sensitivity	< 0.01
Detector technology	substrate-removed MCT
Pixel size	18µm x 18µm
Spectral pixels	~ 1000
Spatial pixels	~ 250 (after binning)
Detector temperature	150K

- High spectral resolution, high SNR, high accuracy
- Nadir and sun glint tracking observation modes
- Sun diffuser and on-board light sources for regular calibration and stability monitoring
- Mass (including CAI) ~ 90kg

• Power (including CAI) ~ 150W

Configuration of CarbonSat Platform (OHB)

Summary & Conclusions

- Due to the highest sensitivity of solar backscatter NIR/SWIR absorption spectroscopy to concentration changes in the lowest atmosphere (PBL), this method has higher relevance for source/sink determination then thermal IR
- CarbonSat mission concept is designed to provide for the first time data with local spatial resolution (2 x 2 km2) and good global coverage (500 km swath), to "image" CO₂ and CH₄ hot spots and allow hot spot source estimates
 - selected by ESA for Phase A/B1 as Earth Explorer #8 (opportunity class), launch 2018 earliest
 - Mission & instrument studies, incl. inverse modelling ongoing
 - Investigation of other (fast-track) mission implementation options ongoing
- Vision: international constellation of CarbonSat's

CarbonSat Constellation

- Five CarbonSat-type satellites in an international constellation to provide global daily coverage:
 - Timely detection of changes
 - Higher accuracy achieved through averaging more measurements
 - Globally compareable data
 - Reliable and timely services

- Establish an international common understanding about the magnitude of greenhouse gas fluxes in a changing climate
- Provide an independent and transparent global system to support verification of international agreements on CO₂ and CH₄ emission reduction

The French-German Climate Mission MERLIN

- Measurement of the column-integrated dry-air volume mixing ratio of methane, called XCH₄ using the DIAL technique with following features:
 - random error:
- ≤ 36 ppb
- systematic error:
- 3 ppb 50 km
- horizontal resolution:
- individual measurement: 100 m
- global coverage (high latitudes in winter time)
- no bias from aerosol and cloud scattering due to range-gated instrument operation
- Estimation of methane sources in key observational regions with the help of inverse modelling
- Estimation of vegetation height from individual off-line measurement
- Measurement of cloud boundaries and elevated aerosol layers

Folie 1

The End

Further Reading ...

Atmos. Meas. Tech., 3, 781–811, 2010 www.atmos-meas-tech.net/3/781/2010/ doi:10.5194/amt-3-781-2010 © Author(s) 2010. CC Attribution 3.0 License.

A remote sensing technique for global monitoring of power plant CO₂ emissions from space and related applications

H. Bovensmann¹, M. Buchwitz¹, J. P. Burrows¹, M. Reuter¹, T. Krings¹, K. Gerilowski¹, O. Schneising¹, J. Heymann¹, A. Tretner², and J. Erzinger²

¹Institute of Environmental Physics (IUP), University of Bremen FB1, Otto Hahn Allee 1, 28334 Bremen, Germany ²Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany

Received: 6 November 2009 – Published in Atmos. Meas. Tech. Discuss.: 7 January 2010 Revised: 14 June 2010 – Accepted: 15 June 2010 – Published: 1 July 2010

Abstract. Carbon dioxide (CO_2) is the most important anthropogenic greenhouse gas (GHG) causing global warming. The atmospheric CO₂ concentration increased by more than 30% since pre-industrial times – primarily due to burning of fossil fuels – and still continues to increase. Reporting of PP CO₂ emission due to instrument noise is in the range 1.6–4.8 MtCO₂/yr for single overpasses. This corresponds to 12–36% of the emission of a mid-size PP (13 MtCO₂/yr). We have also determined the sensitivity to parameters which may result in systematic errors such as atmospheric transport

