PCW/ PHEMOS Weather, Climate and **quality Mission** Focus on FTS Jack McConnell on behalf of the PHEMOS Team

Polar Communications & Weather (PCW) Mission

2 satellites, 12 hour orbits, Meteorological Imager, operational, quasi-geostationary around apogee +/- 4 hrs

Focus on Arctic

anadian Space Agence spatiale gency canadienne

PCW Imager Specifications

Band No.	subgroup	Wavelength (microns)	Heritage	Priority	GSD (km) Goal Max	Main applications
1	VNIR	0.45-0.49	ABI, FDHSI	1	0.5 1.5	Surface, clouds, aerosols
2		0.59-0.69	ABI, FDHSI	1	0.5 1.5	Wind, clouds, ice mapping
3		0.704-0.714	MERIS-09	2	0.5 1.5	Water quality, chlorophyll
4		0.85-0.89	ABI, FDHSI	1	0.5 1.5	Wind, aerosols, vegetation
5	SWIR	1.04 - 1.06	SGLI SW1	2	1.0 3.0	Snow grain and clouds
6		1.37-1.39	ABI, FDHSI	2	1.0 3.0	Cirrus detection
7		1.58-1.64	ABI, FDHSI	1	0.5 1.5	Snow-cloud distinction, ice cover
8		2.22-2.28	ABI, FDHSI	1	1.0 3.0	Aerosol, smoke, cloud phase
9	MWIR	3.80-4.00	ABI, FDHSI	1	2.0 3.0	Fog, fires, ice/cloud separation, wind, cld.phase
10		5.77-6.60	ABI, FDHSI	1	2.0 3.0	Wind, high level humidity
11		6.75-7.15	ABI, MTSAT	2	2.0 3.0	Wind, mid level humidity
12		7.24-7.44	ABI, FDHSI	1	2.0 3.0	Wind, low level humidity
13	LWIR	8.30-8.70	ABI, FDHSI	1	2.0 3.0	Total water, cloud phase
14		9.42-9.80	ABI, FDHSI	2	2.0 3.0	Total ozone
15		10.1-10.6	ABI, FDHSI	2	2.0 3.0	Cloud, surface, cirrus
16		10.8-11.6	ABI, HIRS	1	2.0 3.0	Cloud, SST, ash
17		11.8-12.8	ABI, FDHSI	1	2.0 3.0	Ash, SST
18	LIRCO2	13.0-13.6	ABI, FDHSI	1	2.0 3.0	Cloud height
19		13.5-13.8	MODIS, HIRS	2	2.0 6.0	Cloud height, low level temperature
20		13.8-14.1	MODIS, HIRS	2	2.0 6.0	Cloud height, mid level temperature
21		14.1-14.4	MODIS, HIRS	2	2.0 6.0	Cloud height, high level temperature

- Imagery refresh rate: (T) 20 min (G) 15 min
- Solar bands pixel resolution: (T) 1.5 km (G) 0.5-1.0 km
- Infrared pixel resolution: (T) 3 km (G) 2 km

PHEMOS

- Polar Highly Elliptical Molinya
 Orbital Science for PCW
- Science instrument suite (N-O)
- Weather, Air quality, & Climate,

Strategic Scientific Objectives - Primary

- Improve climate process modeling and weather forecasting, using the provision of basic weather information, including vertical temperature and water vapour profiles
- Better understand the impact of industrial and agricultural pollution and Boreal forest burning on the Arctic as well as the putative impact of expected increases in shipping in the Arctic resulting from the dramatic decrease in multi-year ice using the collection of synoptic-scale air quality (gas and aerosol) measurements over the Arctic.
- Assess perturbations due to the increasing release of methane from the permafrost and from shallowly buried clathrates using the acquisition of column abundance data on methane over the Arctic.

Strategic Scientific Objectives Secondary

- provide measurements of column abundances for stratospheric ozone and a number of other species.
- provide, with modelling, a measure of the solarterrestrial impact on the stratosphere via auroral deposition of NOx in the mesosphere.

Arctic sea ice thickness in metres Future sea ice cover is based on an average of the 6 IPCC models. 2037 is determined as the most probable year for which Arctic Sea ice cover declines to < 1 million km² (Wang and Overland, 2009).

April 3, 2011

Science Objectives

- Provide Arctic data
- To improve meteorological data – T, P, H2O, ice clouds
- To improve understanding of impact of northern nations on air quality
 - Measuring gaseous species data
 - Aerosols
- To improve estimates of GHG gases sources
 April 3, 2011

EC Operational Objectives

- Improve accuracy of short and middle range weather forecasts
- Improve understanding and prediction of AQ from assimilation of column
- To improve modelling of physical processes characterizing Arctic climate and monitoring
- To improve estimates of GHG gases sources (EC/Carbon Assimilation System)

Institutions

- ABB Bomen
- COM DEV
- York University
- University of Toronto
- Dalhousie University
- University of Sherbrooke
- Université de Quèbec a Montréal
- Carleton University
- University of Saskatchewan
- University of Waterloo
- Environment Canada

Instrument and viewing considerations

How to achieve objectives Viewing Earth from UV to Mid-IR

Viewing geometry from Molnyia orbit locations. The 3 views are for an apogee at 90°W longitude. Images have been scaled to show approximate angular size difference due to altitude change over the 8 hr period they span. Note that rotation of the Earth almost exactly compensates for satellite motion in longitude.

Viewing geometry from Molnyia orbit locations. The 3 views would be for the alternate apogees which would occur at 90°E. Images have been scaled to show approximate angular size difference due to altitude change over the 8 hr period they span. Note that rotation of the Earth almost

Spectral Regions

• Mid-IR

- Vertical profiles of T and H2O (only)
- Kernal is generally of low sensitivity near surface
- Using IASI or AIRS as a guide range of potential species is large (next slide)
- Will include limited/partial column information on AQ species, GHG species

Spectral Regions

• UVS

- Kernal is generally uniform sensitivity with height

A. Trishchenko, L. Garand, and L.Trischtchenko, ^{April 3, 2011} Submitted to *J. Atmos. Ocean.Tech.*, March, 2011

IASI instrument

Nadir looking FTS, 12 km pixel x 4 @ nadir, + scanning = +/- 48.3° Spectral coverage = 645-2760 cm-1, Spectral resolution = 0.5 cm-1 Radiometric noise ~ 0.25-0.5 K

Priorities:

NWP: Temperature and humidity profiles each kilometer in the troposphere, (1 K, 10 % accuracy)

Tropospheric chemistry and climate

Integrated concentrations or vertical profiles for a series of target trace gases Courtesy of Cathy Clerbaux, 2010

120 spectra along the swath (2400 km) Each 50 km along the trace April 3, 2011 Courtesy of Cathy Clerbaux, 2010

Spatial Goals and Temporal Goals

- Require highest spatial resolution compatible with mass, technology and financial
- Cloud clearing
- Resolution of features: plumes
- Watch the Earth breath (emissions: AQ and GHGs)

GEM-AQ HCN 600 hPa 2006 08 19 04:00 UTC

GEM-AQ HCN volume mixing ratio at 600 hPa over the Arctic on 19 August 2006 at 0400 UTC. The HCN plume swirling around the North Pole originated from forest fires in Siberia. (Courtesy of Alex Lupu, 2010).

GEM-AQ CO 600 hPa 2006 01 21 09:00 UTC

GEM-AQ CO volume mixing ratio at 600 hPa on 21 January 2006 at 0900 UTC illustrating wintertime transport of mid-latitude pollution into the Arctic troposphere. (Courtesy of Alex Lupu, 2010).

Observing the CO₂ Diurnal Cycle

- Strong diurnal cycle of near-surface CO₂ over Boreal Forests, but not north of tree line
- XCO₂ diurnal amplitude < 1 ppm over forests, not observable in sun-sync LEO

Air Quality

- Goals:
 - Human and biosphere exposures, gaseous, PM
 - source estimates
- Low(er) latitude urban areas
 - Natural sources
 - Trees
 - Boreal forest burning
- High latitude industrial sources
 - Current Northern Industry
 - New oil, gas, mineral exploration
 - Ship traffic increasing
- Volcanoes
- Aircraft

Comparison of in-Arctic trends for black carbon, organic carbon, and SOx emissions under (a) high growth and (b) BAU (business as usual) scenarios.. (Corbette al, 2010)

April 3, 2011

IASI carbon monoxide

Sources and LRT

George et al., in preparation for ACP Turquety et al., in preparation for ACP

Ozone: IASI (SA-NN) vs GOME-2 Stratospheric O3 columns

January→March 2008

July→September 2008

April 3, 2011

A spectrum measured on 17 May in Eastern Siberia (46.09 N, 118.99 E, 11:07 local time, middle and right vertical panels). The focus is given here to the region 1075–1250 cm-1, with contributions from HCOOH, CH3COOH and PAN (CO stretching modes) and to the region from 760 to 835 cm-1 with contribution from PAN (NO2 bending mode). In the middle panels, the light gray lines are the spectral residuals with all species accounted for in the retrieval, indicative of the best achievable RMS (Coheur et al., 2009)

April 3, 2011

GEM-AQ OM 600 hPa 2008 04 27 00:00 UTC

GEM-AQ organic matter concentration at 600 hPa over the Arctic on 27April 2008 at 0000 UTC. Year 2008 was characterized by an unusuallyearly start of the fire season in northern Asia that resulted in largeAprilamounts of pyrogenic emissions being transported into the Arctictroposphere. courtesy of Alex Lupu, 2010

 a) A high spectral resolution A-band spectrometer observes reflected sunlight within the oxygen A-band.

Concept for remote sensing of aerosol and cloud optical properties with a high resolution A-band spectrometer (Pitt et al., 2000)

April 3, 2011

Cloud Clearing

- Problem for all instruments
- Cloudiness and pixel size
- Critical for temperature
- Critical for GHGs
- Important for AQ

Higher Spatial Resolution UVNS for NO₂? Cloud Error Reduced with Increasing Resolution Study by K. Chance for GEOCAPE: Sufficient S/N for NO₂ Down to 2-4km

Fraction of global cloud-free observations

40 km x 80 km

m 1 km x 1 km 10 km x 10 km

The fraction of cloud-free observations as a function of sensor resolution (footprint area) for 3 different threshold levels for cloud cover within the field of view. This is a copy of Figure 1 from Krijger et al., 2007.

Distribution of clear locations

for three AIRS channels:

A. channel 145 (at 14.5 μm and a weighting function peak around 100 hPa),

B. channel 226 (at 13.5 μm and a weighting function peak around 600 hPa),

C. channel 787 (at 11.0 µm and a weighting function peak at the surface). (McNally and Watts, 2003).

Table 2 Instrument Characteristics Table 2A						
Instrument	Spectral Bange	Spectral Resolution	Sensitivity Goal (G) Threshold (T)	Ground IFOV		
FTS – Band 1	700 - 1500 cm ⁻¹ 14.2 to 6.7 μm	0.25 cm ⁻¹ ±2 cm OPD	$\begin{array}{rrr} \text{NEdT} & \text{cm}^{-1} \\ = 0.33 \text{K} (\text{T}) & 700\text{-}1500 \\ = 0.075 \text{K} (\text{G}) & 700\text{-}1000 \\ = 0.1 \text{K} (\text{G}) & 1000\text{-}1200 \\ = 0.2 \text{K} (\text{G}) & 1200\text{-}1500 \end{array}$	10x10 km ² IFOV Contiguous		
Table 2B						
FTS – Band 2	1800 - 2700 cm ⁻¹ 5.6 to 3.7 μm	0.25 cm ⁻¹ ±2 cm OPD	NEdT cm^{-1} = 0.6(T), 0.3(G)K 1800-2000 = 1.0(T), 0.5(G)K 2000-2200 = 2.0(T), 1.0(G)K 2200-2700	10x10 km ² IFOV Contiguous		
Table 2 C						
FTS - Band 3 CH ₄	5990 - 6010 cm ⁻¹	0.25 cm ⁻¹	> 500:1 for 0.4 albedo at 60° SZA SNR(T)=80, (G)=240	10x10 km ² contiguous		
UVS	280 - 540 nm	1.0 nm	200 to 4,000 (0.1 s) 8x8 km IFOV SNR(T)=1250, (G)=2000, 400 nm SNR(T)=300, (G) = 600, 350 nm	1-D scan 6.8x8.5 km ²		

Table 2D – additional options to Table 2A above						
$FTS - Band 3$ $CH_4 + CO_2$	5990 - 6450 cm ⁻¹	0.25 cm ⁻¹	> 130:1 for 0.4 albedo at 60° SZA	10x10 km ² contiguous		
FTS – Band 4 O ₂ (A-band)	13060-13160 cm ⁻¹	0.5 cm ⁻¹	> 100:1 for 0.4 albedo at 60° SZA	10x10 km ² contiguous		
Table 2E – option for heavier mass						
SHS-CH4	1663-1668 nm	0.1 cm ⁻¹	3x10 ⁻⁹ Wm ⁻²	3x3 km ² IFOV 2-D scan		
SHS-CO ₂	1993-1998 nm	0.1 cm ⁻¹	3x10 ⁻⁹ Wm ⁻²	3x3 km² IFOV 2-D scan		
SHS - O ₂	13000-13100 cm ⁻¹ TBC	0.1cm ⁻¹ TBC	TBC	3x3 km² IFOV 2-D scan		

Note: UVS numbers are for a bright scene (high albedo)

IR-Sounder description High level requirements - Baseline

Instrument	Spectral Range	Spectral Resolution	Sensitivity Goal (G), Threshold (T)	Ground IFOV
FTS – Band 1	700 - 1500 cm ⁻¹ 14.2 to 6.7 μm	0.25 cm ⁻¹ ±2 cm OPD	NEdT $< 0.33 \text{ K} (\text{T}) 700-1500 \text{ cm}^{-1}$ $< 0.075 \text{ K} (\text{G}) 700 -1000 \text{ cm}^{-1}$ $< 0.1 \text{ K} (\text{G}) 1000 -1200 \text{ cm}^{-1}$ $< 0.2 \text{ K}(\text{G}) 1200-1500 \text{ cm}^{-1}$	10×10 km ² IFOV contiguous
FTS – Band 2	1800 - 2700 cm ⁻¹ 5.6 to 3.7 μm	0.25 cm ⁻¹ ±2 cm OPD	NEdT < 0.6 K(T), 0.3 K (G) 1800-2000 cm ⁻¹ < 1.0 K (T), 0.5 K (G) 2000-2200 cm ⁻¹ < 2.0 K (T), 1.0 K (G) 2200-2700 cm ⁻¹	10×10 km ² IFOV contiguous
FTS - Band 3 CH ₄	5990 - 6010 cm ⁻¹	0.25 cm ⁻¹	SNR > 80 (T), 240 (G) for 0.4 albedo at 60° SZA	10×10 km ² contiguous
FTS - Band 3b CH4 + CO2	5990 - 6450 cm ⁻¹	0.25 cm ⁻¹	SNR > 130 for 0.4 albedo at 60° SZA	10×10 km ² contiguous
$FTS - Band 4$ $O_2 (A-band)$	13060-13160 cm ⁻¹	0.5 cm ⁻¹	SNR > 100 for 0.4 albedo at 60° SZA	10×10 km ² contiguous

Interfaces Main resources required

	IR-Sounder	UVNS	Resources
Mass	38.7 kg + 11 kg contingency	Optical head: 6 kg Electronics: 5 kg Structure: 9 kg Contingency: 6 kg	50 kg
Volume	32 cm x 30 cm x 22 cm	Optical head: 35 cm x 30 cm x 25 cm Structure: 46 cm × 35 cm × 20 cm	30 cm x 30 cm x 30 cm
Power	106 W + 25 W contingency	25 W	100 W
Data rate	< 16.4 Mb/s	5 Mb/s	5 Mb/s

Nominal parameters of PHEMOS FTS

- 10 x 10 km GIFOV at nominal 37600 km altitude and nadir
 - For all bands
- Measurement time per GIFOV ~100s.
 - For contiguous coverage measure ~100,000 IFOVs in ~60 min.
 - Require at least 2800 parallel detectors
 - Focal plane array detectors with ~60 x 60 pixels
- With mirror can stare/point to mesoscale event (fire, storm, volcano)
 - Reduce FOR
 - Reduce repeat time

IR-Sounder description Observation scenario

- Field of regard is approximately 3020 km x 3530 km (± 1.5 h from apogee)
- Field of regard is scanned in 2-D
 - Step & stare
 - 6 x 7 stares
 - 10% overlap (contingency for pointing error)
- Each stare:
 - Has 56 x 56 pixels
- Each pixel is 10 km x 10 km (± 1.5 h from apogee)
- The FOR is imaged in 1 h 11 min (FOV 100s)
- Imaging time is kept constant over the orbit
 - FOR dimension will vary with altitude

IR-Sounder description Scan pattern

IR-Sounder description Interferometer

- Based on MINT interferometer (CSA STDP)
- Mass: 1 kg
- MPD: 2 cm
- Fibre-coupled laser metrology
- Spectral range: 0.7 to 25 µm
- Beam size: 30 mm
- Modulation efficiency: 80% at 1.6 µm

Baseline 3-D view

MINT interferometer Option CH4 +CO2 imaging with O2-A band

Ground Segment Overall Principles

- Three main data streams:
 - DS1: operational meteorological and air quality
 - Complement to PCW MP
 - DS2: special events (volcanic eruption, etc.)
 - DS3: research products
- Same data products level as PCW MP

- Use the PCW Ground Segment for DS1 and DS2
- Use the PHEMOS Ground Segment for DS3
- PHEMOS Ground Segment has no direct access to the PCW satellite, the PCW payloads and the PHEMOS payloads.

16hrs orbit is very good alternative candidate for PCW

A. Trishchenko, L. Garand, and L. Trischtchenko, Submitted to *J. Atmos. Ocean. Tech.*, March, 2011

Comparison of radiation conditions between Molniya, GEO and TAP orbits

A. Trishchenko, L. Garand, and L. Trischtchenko, Submitted to *J. Atmos. Ocean. Tech.*, March, 2011

Zonal mean coverage: 12-hr vs 16-hr orbit

A. Trishchenko, L. Garand, and L. Trischtchenko, Submitted to J. Atmos. Ocean. Tech., March, 2011

Summary from Phase 0

- Application of FTS in Thermal and NIR spectral range
- UV instrument also possible
- For Highly Elliptical Orbits (Molinya and TAP)
 - 24x7 coverage above ~ 60N
 - 2 satellites
 - Possibility of stereo viewing
 - Footprint better or equal to 10x10 km2
- Compact
- Science (N-O)
 - Weather forecasting T, water profiles
 - Air quality, total/partial columns
 - Climate Gases/total partial columns

Thank You