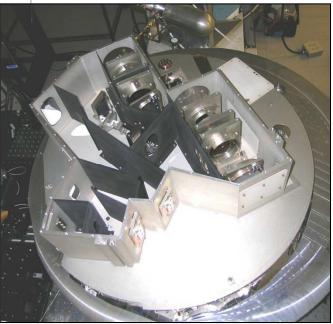
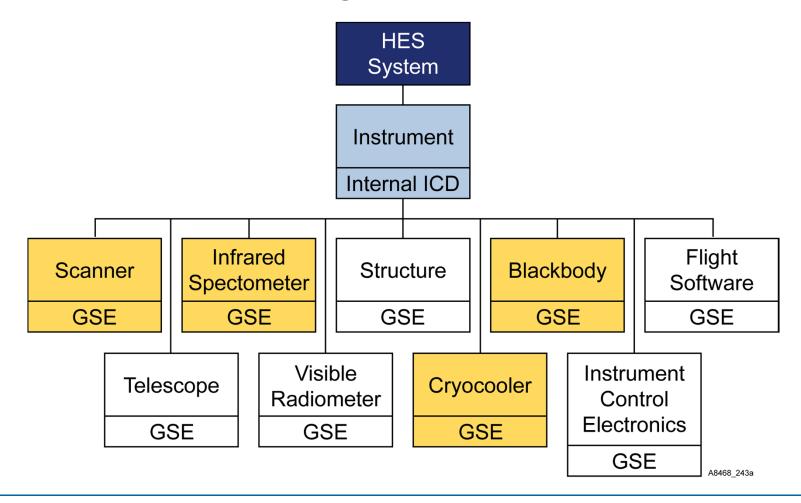


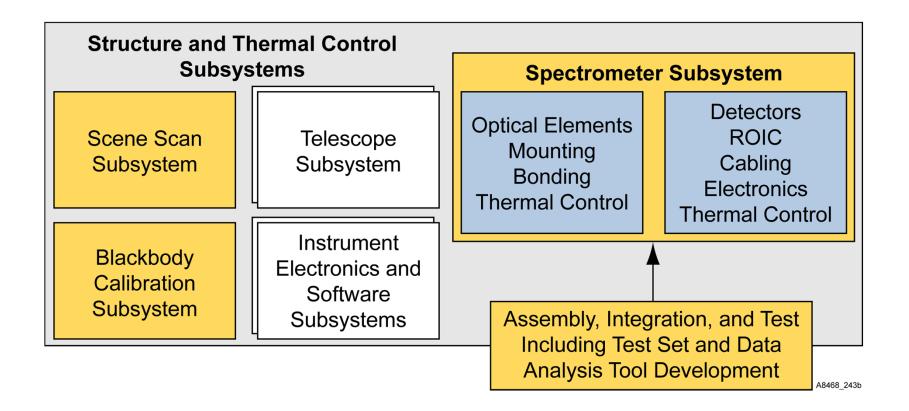
An Industry Perspective on Risk Status for a Hyperspectral Imager


Paula Wamsley Ball Aerospace & Technologies Corp.

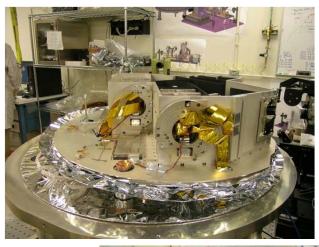
Key Technologies are No Longer High Risk



- GOES-HES Studies
- Industry Investments

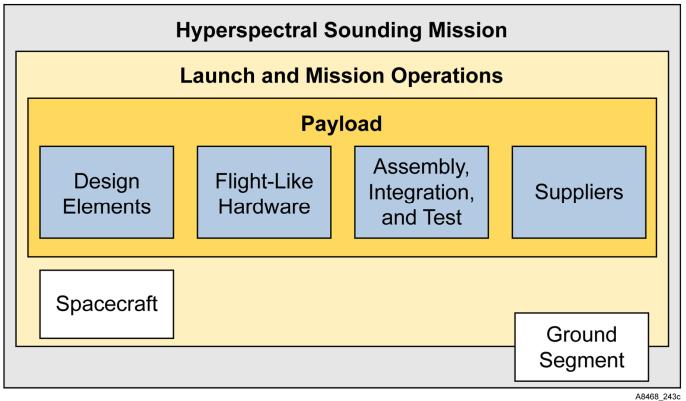


Hardware Demonstrations Reduced the Risk of the Highest Risk Elements


Flight-Like, Cryogenic Imaging Spectrometer Hardware Successfully Demonstrated



Ball Funded, Developed, & Tested Critical Subsystems


Subsystem	Project Guinness	
Focal Plane Array	Spectrometer	
Focal Plane Electronics	Spectrometer	
Signal Cables	Spectrometer	
Calibration	*	
Spatial Scanner	*	
Spectrometer Optics	Spectrometer	
Thermal Control	Spectrometer	
* Ball Aerospace GOES-HES study		

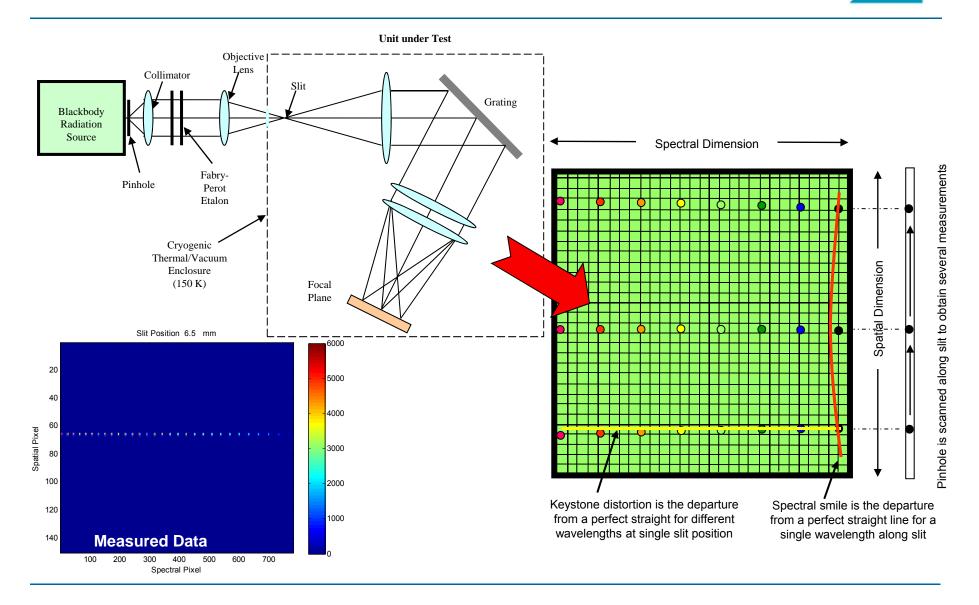
Program Elements Addressed by Project Guinness

Reference:

Efficient characterization of imaging spectrometers: application in the LWIR and MWIR

Author(s): Timothy J. Valle; Thomas U. Kampe; Paula R. Wamsley; Holden Chase; Glenn E. Taudien; Peter T. Spuhler; Peter B. Johnson; Gary L. Mills; Proceedings Vol. 7453 Infrared Spaceborne Remote Sensing and Instrumentation XVII

Spectrometer Design Risks Are Low


Design Element	Requirements	Risk Status
Electrical	 Low noise signal chain Cold focal plane array Warm electronics Data acquisition interface 	
Optical	 Single slit, two channels Wavelength range: LWIR 	
Mechanical	Thermo-optical-mechanical stability	Low
Thermal	 Spectrometer at 100K Focal plane at 40K 	
Assembly	Components & mounts with built-in alignment features	Low
Test	Co-registration of the two channels to 0.1 pixels	

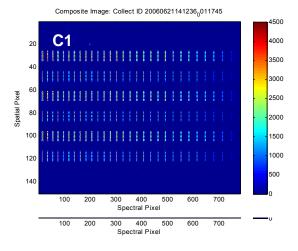

Hardware Risks Are Low

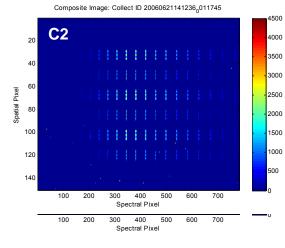
Hardware Element	Demonstration	Risk Status
Focal Plane Arrays	Large format, LWIR cut-off, 40K operation	Low
Signal Cables	Shielded, low noise cables with low thermal conductivity Low	
CdTe Lenses	Bonding and mounting for survivability (temp range) and positional stability (op temp) of high transmission optics Low	
Diffraction Gratings	Ruled, full size	Low
Collimator & Housing	Mechanical stability from ambient to 100K	Low
Cryocooler	Dual temp stages, thermal bus, no impact on noise (electrical) or mechanical stability of the spectrometer	

Fabry-Perot Test Methodology Provides Efficient Measurement of Key Performance Parameters

Assembly, Integration, & Test Risks Are Low

AI&T Element	Demonstration	Risk Status
Built-in Alignment Features & Compensators	Spectrometer aligned and tested in 4 cycles over 2 months	Low
Alignment	 Slit to grating to dual focal planes Magnification of each channel Focus Reproducibility over multiple cycles 	
Test Set Development	 Vacuum chamber and thermal control Design & development (electrical, optical, mechanical, & thermal) Critical X,Y,Z alignment Tunable Fabry-Perot development for LWIR Automated data acquisition software 	
Test & Data Analysis Software	 Keystone Distortion Smile Distortion Modulation Transfer Function Spectral Response Function 	



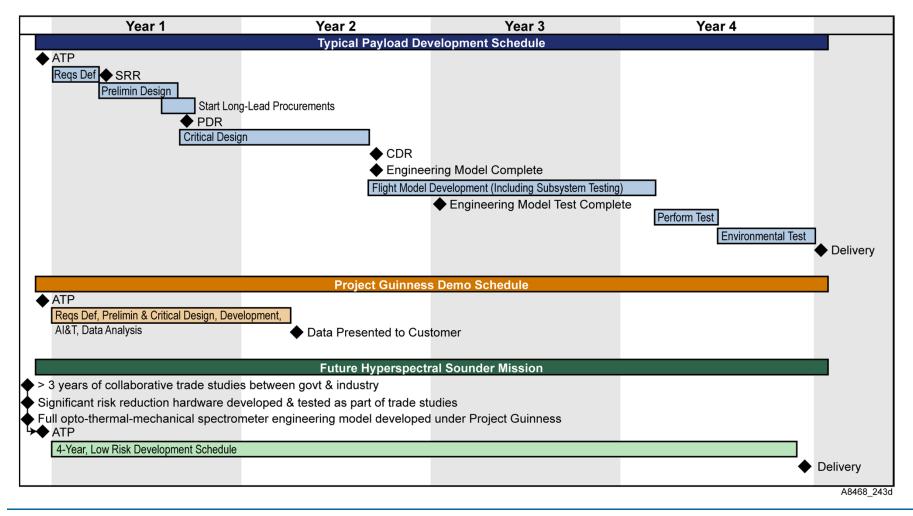

Supplier Risks Are Low

Hardware Element	Risk Status
Focal Plane Arrays	Low
Focal Plane Electronics	Low
Cryo-vacuum Signal Cables	Low
Diamond Turned Optics	Low
Housing & Mounts	Low
IR Optics	Low
Diffraction Grating	Low
Optical Coatings	Low
Cryo-cooler	Low
Black Body	Low

Completed Risk Reduction Activities Are Still Relevant

- Ball Aerospace designs are modular and therefore flexible to requirements changes
 - Detailed requirements typically flow down to component specification
 - Component specifications are not at their manufacturing limits
- Designs meet requirements with margin
- Designs kept pace with evolving GOES-HES requirements

	Spectral Position (pixel)	Spatial Position (pixel)	Spectral Position (pixel)	Spatial Position (pixel)
C1	50	121.73	50	28.01
C2	50	121.66	50	28.07
Delta		0.07		0.06
C1	736	121.75	736	28.08
C2	736	121.72	736	28.07
Delta		0.03		0.01
	Maximum Co-Registra	ation Delta:	0.07 pixels	



Investments Are Still Relevant to Future Missions

Subsystem	Relevance	Comments
Focal Plane Array	High	 > OK for dimensions ≤ demonstration size > OK for changes in spatial (N) x spectral (M) format > OK for dual hybridization > OK for wavelengths ≤14µm > Flight ROIC design (LDCM/OLI)
Focal Plane Electronics	High	 OK for FPA format changes OK for high voltage biases Flight electronics design (LDCM/OLI)
Cryo-vacuum Cables	High	 OK for lengths up to demonstration length OK for various mounting config Flight cable design (LDCM/OLI)
Optical	High	 > OK for wavelengths ≤14µm > OK for different wavelength break points > OK for spectral resolution changes > OK for spectral bandpass changes
Mechanical	High	OK for similarly sized optics and optical materials
Thermal Control	High	Existing cryocooler has cooling capacity and good electrical and mechanical noise properties

Investments Enable Low-Risk Schedule

Conclusion

Key Technologies Are No Longer High Risk