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Our goals are to
Improve sea ice forecasts
Advance the Sea Ice Outlook
Improve sea ice models
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Sea Ice Outlook and the Prediction Network

September Sea Ice Extent (Million Square Kilometers)

June 2015 Outlooks of September 2015 Extent
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Sea Ice Outlook and the Prediction Network

June, July, August 2014 Sea Ice Outlook contributions by method (total n = 79)
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Sea Ice Outlook and the Prediction Network

June & July 2015 Sea Ice Outlook contributions by method (total n = 63)
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Sea Ice Forecast Systems

Model
Ensemble

Observations #

Initial state Forecast # Calibration

Challenges:
Initialize non-observable quantities (e.g., ice thickness)
Need to know observation uncertainty for ensemble generation
Sea ice ensemble methods and coupled data assimilation not well developed
Model error
Metrics for calibration not well developed
Requires massive computing effort



Synthesis of Sea Ice Outlooks through 2014

Median and IQR of July predictions with observed September means, 2008-2014
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Forecast of September Sea Ice Extent
at 4 Month Lead Time
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Forecast of September Sea Ice Extent
at 4 Month Lead Time
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Not known why some
retrospective forecasts are Figure by E. Blanchard-
more skillful than Outlooks Wrigglesworth




Forecast of September Sea Ice Extent
at 4 Month Lead Time

Skill of Atmospheric Circulation Forecasts from ECMWF
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Forecast of September Sea Ice Extent
at 2 Month Lead Time
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Not known why less skillful
at shorter lead time




Method for Estimating Predictability

Compare ensemble forecasts to another ensemble member
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Forecast of September Sea Ice Extent
at 2 Month Lead Time
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+ Predictability indicates room
for improved forecasts




What Gives Us Sea Ice Predictability?

Initial state: concentration, thickness, SST, melt
ponds, snow depths

Transport with currents and winds

Climate forcing: CO,, aerosols, etc

What inhibits Predictability?

Atmospheric weather/chaos is irreducible

Why don’t we achieve predictability?

Model errors, Initialization errors, climate forcing
uncertainty



Sea Ice Outlook Spatial Distributions

Probability of Sea Ice Presence (SIP)
September 2014
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Sea Ice Outlook Spatial Distributions

Probability of Sea Ice Presence by Model

NCAR CESM (May) NASA GMAO (May) NOAA CFS (Aug) UW PIOMAS (Aug)
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Sea Ice Outlook Spatial Distributions
First Ice-Free Day (IFD)
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Sea Ice Outlook Spatial Distributions

Distribution of Ice Free Day (IFD) Observed and in 2 Contributions
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High Resolution and Global Coverage

Refined mesh grids, here showing an unstructured Veronoi mesh
Best qualities of regional and global models

Figure by W. Skamarock









+ Even now we could
provide thickness, snow
depths, ridged-ice
fraction, ice age

Soon we could provide
lead orientation, floe siz
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Summary

Sea ice forecasts are currently skillful at least 4 months in
advance of September. Predictability is even longer.

Challenges:
Initialize variables that aren’t well-observed
Improve models
Coupled, multivariate data assimilation for ensemble initialization
Improve evaluation and calibration methods

Opportunities:
Beyond September, Beyond extent, Beyond monthly
Refined mesh grids, new rheologies and model physics
Acquire observations that we know will help



We are collecting and tabulating details about forecast systems
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Lessons learned from the 2014 SIO
modeling contributions

All groups run ensembles of simulations, most with more than 10 members
Uncertainty associated with stochastic atmospheric forcing is well evaluated
Some groups have started providing user-relevant diagnostics
" Uncertainty associated with initial conditions is not systematically evaluated
"% Uncertainty associated with model parameters/physics is not evaluated

Predictions become more confident (individually and as a group) over time

Slide from F Massonnet
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Advanced Analysis of SIO Contributions

Example for the “Pan-Arctic September” contributions

June 2014 Sea Ice Outlook contributions by method (total n = 28)
Heuristic, statistical, all modeling, mixed, and asimilation+fully coupled modeling
June 2015 Sea Ice Outlook contributions by method (total n = 30)
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This style of figure appears in the SI10 report for June 2014



