Surface Reflectance

Eric Vermote
NASA GSFC Code 619
eric.f.vermote@nasa.gov
A Land Climate Data Record
Multi instrument/Multi sensor Science Quality Data Records used to quantify trends and changes

Emphasis on data consistency – characterization rather than degrading/smoothing the data

STAR JPSS Enterprise Algorithms Workshop, March 30 – 31, 2016, NCWCP, College Park, MD
Land Climate Data Record (Approach)

Needs to address geolocation, calibration, atmospheric/BRDF correction issues

CALIBRATION

Degradation in channel 1 (from Ocean observations)

Channel1/Channel2 ratio (from Clouds observations)

ATMOSPHERIC CORRECTION

BRDF CORRECTION

NDVI at California Redwood Site, 1981-1999

El Chichon Pinatubo
The MODIS **Collection 5 AC algorithm** relies on

- the use of very accurate (better than 1%) vector radiative transfer modeling of the coupled atmosphere-surface system

- the inversion of key atmospheric parameters (aerosol, water vapor)

Home page: http://modis-sr.ltdri.org
The complete 6SV validation effort is summarized in three manuscripts:

Methodology for evaluating the performance of VIIRS/MODIS

To first evaluate the performance of the MODIS Collection 5 SR algorithms, we analyzed 1 year of Terra data (2003) over 127 AERONET sites (4988 cases in total).

Methodology:

- Subsets of Level 1B data processed using the standard surface reflectance algorithm
- Reference data set
- Atmospherically corrected TOA reflectances derived from Level 1B subsets
- AERONET measurements (\(\tau_{\text{aer}}, H_2O, \) particle distribution, Refractive indices, sphericity)
- Vector 6S

If the difference is within ±(0.005+0.05\(\rho \)), the observation is “good”.

http://mod09val.ltdri.org/cgi-bin/mod09_c005_public_allsites_onecollection.cgi

STAR JPSS Enterprise Algorithms Workshop, March 30 – 31, 2016, NCWCP, College Park, MD
quantitative assessment of performances (APU)

COLLECTION 5: accuracy or mean bias (red line), Precision or repeatability (green line) and Uncertainty or quadratic sum of Accuracy and Precision (blue line) of the surface reflectance in band 1 in the Red (top left), band 2 in the Near Infrared (top right also shown is the uncertainty specification (the line in magenta), that was derived from the theoretical error budget. Data collected from Terra over 200 AERONET sites from 2000 to 2009.
Improving the aerosol retrieval in collection 6 reflected in APU metrics

COLLECTION 6: accuracy or mean bias (red line), Precision or repeatability (green line) and Uncertainty or quadratic sum of Accuracy and Precision (blue line) of the surface reflectance in band 1 in the Red (top left), band 2 in the Near Infrared (top right also shown is the uncertainty specification (the line in magenta), that was derived from the theoretical error budget. Data collected from Terra over 200 AERONET sites from 2003.
Aerosol retrieval also shows improvement

Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for East Coast sites selection: GSFC (top left), Stennis (top right), Walker Branch (bottom left) and Wallops (bottom right).
Aerosol retrieval also shows improvement

Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for the West Coast sites selection: UCLA (top left), La Jolla (top right), and Fresno (bottom left) and Table Mountain (bottom right).
Aerosol retrieval also shows improvement

Scatterplot of the MOD09 AOT at 550nm versus the AERONET measured AOT at 550nm for a very bright site in Saudi Arabia (Solar Village)
VIIRS Surface reflectance

- the VIIRS SR product is directly heritage from collection 5 MODIS and that it has been validated to stage 1 (Land PEATE adjusted version)

- MODIS algorithm refinements from Collection 6 will be integrated into the VIIRS algorithm and shared with the NOAA JPSS project for possible inclusion in future versions of the operational product.
Evaluation of Algorithm Performance

VIIRS C11 reprocessing

450000 pixels were analyzed for each band.

Red = Accuracy (mean bias)
Green = Precision (repeatability)
Blue = Uncertainty (quadratic sum of A and P)

On average well below magenta theoretical error bar
Evaluation of Algorithm Performance

VIIRS C11 reprocessing

EVI

NDVI

STAR JPSS Enterprise Algorithms Workshop, March 30 – 31, 2016, NCWCP, College Park, MD
Use of BRDF correction for product cross-comparison

Comparison of aggregated FORMOSAT-2 reflectance and MODIS reflectance. No BRDF correction. Density function from light grey (minimum) to black (maximum); white = no data.

Comparison of aggregated FORMOSAT-2 reflectance and BRDF corrected MODIS reflectance. Corrections were performed with Vermote al. (2009) method using for each day of acquisition, the angular configuration of FORMOSAT-2 data.
Cross comparison with MODIS over BELMANIP2

The VIIRS SR is now monitored at more than 400 sites (red losanges) through cross-comparison with MODIS.
Results over BELMANIP2

VIIRS vs Terra Near-Infrared

VIIRS vs Aqua Near-Infrared
Cross comparison results of the VIIRS and MODIS-Aqua SR product on a monthly basis for the BELMANIP sites reprocessed version (C1.1) for the near infrared band (M7).
Performances of the VIIRS surface reflectance in the red band derived over AERONET sites for 2012 (Left side) and 2013 (right side).
The need for a protocol to use of AERONET data

To correctly take into account the aerosols, we need the aerosol microphysical properties provided by the AERONET network including size-distribution ($\%C_f$, $\%C_c$, C_f, C_c, r_f, r_c, σ_f, σ_c), complex refractive indices and sphericity.

Over the 670 available AERONET sites, we selected 230 sites with sufficient data.

To be useful for validation, the aerosol model should be readily available anytime, which is not usually the case.

Following Dubovik et al., 2002, JAS,*2 one can used regressions for each microphysical parameters using as parameter either τ_{550} (aot) or τ_{440} and α (Angström coeff.).

The protocol needs to be further agreed on and its uncertainties assessed (work in progress)
Preliminary version of Enterprise VIIRS SR has been tested
Preliminary version of Enterprise VIIRS SR has been tested.
Preliminary version of Enterprise VIIRS SR has been tested.
Preliminary version of Enterprise VIIRS SR has been tested.
Conclusions

• Surface reflectance (SR) algorithm is mature and pathway toward validation and automated QA is clearly identified.

• Algorithm is generic and tied to documented validated radiative transfer code so the accuracy is traceable enabling error budget.

• The use of BRDF correction enables easy cross-comparison of different sensors (MODIS, VIIRS, AVHRR, LDCM, Landsat, Sentinel 2, Sentinel 3...)

• AERONET is central to SR validation and a “standard” protocol for its use to be defined (CEOS CVWG initiative)