

NRL-MRY VIIRS Demonstrations

Satellite Meteorological Applications Section

Naval Research Laboratory Marine Meteorology Division, Monterey, CA Jeff.Hawkins@nrlmry.navy.mil

Jeremy. Solbrig@nrlmry.navy.mil

VIIRS Imagery User Feedback January 7, 2017

NexSat Home Page

http://www.nrlmry.navy.mil/NEXSAT.html

Volcanoes Cities

NexSat: CONUS Domain

Catalog of NexSat Products

Standard Products	Cloud Products	Environmental Products
Visible (daytime)	Cloud layers (snow, low-middle, high)	Aerosol amounts (optical depth)
Visible (night time)	CloudSat (cloud profile)	
Infrared	Cirrus cloud detection	Biomass (vegetation type)
Water Vapor	Contrail detection	Dust detection
True Color	Low cloud detection (night)	Fire detection (hot spots)
Pseudo/GEO True Color	Convective cloud top height	Lightning detection
Rain Rates	Cloud properties	Snow cover (surface)
Rain Totals - 3, 6, 12, 24 hours 2 2 4 5 6 7 40 42 44	-effective radius -optical depth -cloud top temperature	*NWP model overlays Sea Level Pressure
─ 2, 3, 4, 5, 6, 7, 10, 12, 14 days	-cloud top height -cloud type	500 mb Heights
*Winds		
 speed and direction 		sfc, 700 500 300 mb Winds
– low level		1000-500 mb Thickness
 middle level 		Surface Temperature
 upper level 		Jet Stream

* NAVGEM and COAMPS[®]

VIIRS products in orange

NRL VIIRS Cal/Val Web Page

http://www.nrlmry.navy.mil/VIIRS.html

Monitoring Volcanic Plumes

Mt. Etna Eruption

VIIRS products available to the Volcanic Ash Advisory Centers (VAAC)

> Dark airborne ash plume being ingested into mesoscale low

Collaboration: Volcanic Ash Advisory Centers (VAAC)

2 October 2013 0957 UTC

VIIRS provides a the required spectral suite of bands required to reproduce the MODIS 'blue light absorption' mineral dust enhancement algorithm of Miller(GRL; 2003).

Tools for Quantitative Lunar Applications from the VIIRS/DNB

 A lunar irradiance prediction model to allow conversion from DNB radiance to reflectance units

 $\mathbf{R} = \pi \mathbf{I}^{\uparrow} \, / \, [\cos(\theta_m) \mathbf{E_m}]$

Enables quantitative applications from measurements of reflected moonlight

Miller and Turner, 2009. IEEE Trans. Geosci. Rem. Sens., 47(7), 2316-2329.

- A lunar availability assessment for the VIIRS/DNB to determine when and where nighttime lunar applications are possible for NPP and other polar orbits.
- ~45% all nights at mid-latitudes offer sufficient levels of moonlight

Miller et al.. 2012. J. Atmos. Ocean. Tech., In Press.

Reflectance Near 'Lunar Terminator'

The lunar model can be used to produce a form of near constant contrast (NCC) imagery.

Applicable to *night-only* (i.e., to lunar observations at different times in the lunar cycle, especially near lunar terminator.

Not applicable to the day/night terminator where solar signal is present.

(28 June 2012, South Africa, around first-quarter Moon) shown here... \rightarrow Moon is setting in the west at the time of the DNB nighttime overpass.

Nighttime Sea Ice Monitoring DNB (low light visible) - Nighttime during Full Moon

11/27 – 12/04, Lunar cycle > 3/4

Collaboration with National Ice Center: Suitland, MD

VIIRS Imagery Team

Tracking the Rim Fire at Night VIIRS DNB + IR enhanced with Lunar Irradiance Model 18 – 27 August

NOAA/JPSS S

125°W

120°W

115°W nterey

Comparing Nighttime Visible Products

DMSP-OLS 04:29Z

23 Aug VIIRS-DNB 09:48Z

Nighttime TC Monitoring Via DNB

VIIRS DNB reflectance + IR reveals LLCC displaced ~60 nm from IR convection center

CPHC Warning :

- Relocated TS Flossie center fix well north
- Landfall no longer on island of Hawaii
- Revised track now impacts area along northern coasts

Collaboration: Joint Typhoon Warning Center

VIIRS Near Constant Contrast (NCC)

Contrast enhancement for cloud detection under faint illumination
 <u>2. Take advantage of highly variable air glow opportunities</u>

VIIRS Reflectances vs NCC

- 1. Better land surface details in the desert SW.
- 2. Improved cloud detail and contrast of clouds with land/ocean backgrounds.
- 3. Moonglint region--better illustration of the island wake calm waters (SE of Catalina Island) for surface wind speed and direction inference.
- 4. Not only is it a nice image, but it's *quantitative* information which can be translated into various physical properties like cloud optical depth.

Low Clouds & Fog Detection

Feb 23, 2012

Low Gloud Deck Boundary Airglow provides Korean sufficient Peninsula illumination to "light up" low **City lights** clouds Fishing boats **Day/Night Band**

Collaboration: Fleet Numerical & Meteorology Center

~1:30 AM Pacific: New Moon

Outreach: Puerto Rico NWS Support

Collaboration: NWS Puerto Rico