Outline

1. Organizational Overview
2. Update on Ongoing Research
3. IPY Activities
4. USIABP/IABP
Science and Applied Technology Organization

Improved Transition Process focuses on effectively moving products from Science to Operations

Science Team
- LT Woods
- Sean Helfrich
- AG1 Pena
- Wanshu Huang
- UCAR Visiting Scientist

Transition Team
- LT Wagonseller
- Brian Melchior
- AG3 Lee
- Operations Liason
- IT Liason

Operations Department

IT Department

Leadership
- **Dr. Pablo Clemente-Colón**
 - Chief Scientist

- **LT John Woods**
 - Science Department Head

- **LT Bryan Wagonseller**
 - (NOAA Corps)
 - Transition Officer
New Personnel Onboard

Mr. Sean Helfrich – NESDIS Physical Scientist hired (re-hired)
AG3 Lee – operations transition support (formerly in production)
Dr. Todd Arbetter – Has just signed UCAR offer to fill NIC – PSC Visiting Scientist Position

Open Positions

Physical Scientist/Oceanographer (STAR FTE) still not fulfilled
NOAA Corps Officer departing in May w/ replacement not earlier than September
NIC Science Participation in Committees and Working Groups

- Antarctica IPY SI Thickness WG
- Antarctica IPY Air/Sea/Ice Interaction WG
- GCOS/GOOS/JSC AOPC/OOPC WG-SST/SI
- GIIPSY Remote Sensing Data IPY Coordinating Group
- IABP Partnership
- IGARSS TPC/Ocean & Cryosphere Sessions Coordination
- IICWG Science and Technology Committee
- IICWG International Polar Year (IPY) Ad-hoc Committee
- IPAB Steering Committee
- NAIS Science Committee
- NAVO Technical Advisory Board (TAB)
- OceanSAR 2006 Science Committee
- SeaSAR Science Committee (next workshop September 2008)
- USIABP Coordination
- WindSat/CMIS-SIAWG under development
RADARSAT-1 SAR (CSA and MDA)

• Present NASA-NOAA-CSA agreement in force until NOV07 or R-2 commissioning

• NASA negotiating agreement extension including research access to R-2 – Draft agreement prepared by Craig Dobson, Eric Madsen Representing NOAA

• CSA has funding for continued R-1 operations through IPY
RADARSAT-2 SAR (MDA)

- Commercial mission
- New C-band polarimetric modes
- Launch planned for a 3 months window starting in March 2007
- Operational data in R-1 legacy modes available 2-3 months after launch
- No intergovernmental agreements in place for data access
- Potential for NOAA, NASA, ASF ground segment contribution in exchange for data access under consideration
Envisat ASAR (ESA)

- GMM mosaics available through PolarView project
- GMM swath data access through rolling archive
- Research-only access to ASAR high bit rate imagery through ESA Envisat rolling archive
- ASF investigating commercial acquisition of ASAR high bit rate through Envisat consortia (EMMA, SARCOM)
- No sharing of commercial acquisitions between NIC and CIS under the NAIS umbrella presently allowed
Envisat Global Monitoring Mode

ENVISAT ASAR:
Global Monitoring Mode (GMM) - 1 km

- Daily Mosaic; free access
- Very Useful for Antarctic Iceberg database
- Additional data source for the North and South daily ice edge and analyses
Arctic ASAR Coverage
One day: 16 Jan 2006

Global Monitoring mode

High resolution ASAR modes
Antarctic ASAR coverage
One day: 16 Jan 2006
NIC Antarctic Bergs

- NIC website currently logs 44 icebergs in the Antarctic region

- Last updated position given by source used (as of 2/20/07)

- Envisat ASAR GMM: 31
- DMSP OLS: 4
- MODIS: 9
GM mode ice motion algorithm:

- Comparison with International Arctic Buoy Programme (IABP).
- RMS differences between the u- and v-components of drift amounts to 2.3 and 2.4 km respectively. This represents an improved accuracy over ice drift derived from QuikSCAT or SSM/I.

Vexcel UK Ice motion computed between data acquired on 7th & 9th Jan 2006
ALOS PALSAR (JAXA)

- L-Band w/ polarimetric modes
- Some calibrated data available since October 2006
- ASF Reception – ALOS Americas Data Node to provide for NRT data over Alaska mask
- Only non-NRT data available as of now
- Access to ASF data order desk provided
- NOAA agreement for 5 frames/day for NIC
- NASA-lead interagency ALOS consortium formed to get bulk data pricing
- NOAA (NESDIS/OSDPD) to join consortium
- JPL L-band sea ice characterization study funded
ALOS Data
Sentinel-1 Mission Status

Sentinel-1 SAR (ESA)

- Mission Study input provided
- 2-satellite baseline constellation considered
- 1st launch scheduled for 2011
- Continuity for ASAR, Backup for RADARSAT-2
- ESA coordinating with RADARSAT-Constellation and Canadian Stations

* Should the U.S. join the discussion?
RADARSAT-Constellation SAR (CSA)

- C-band 3 satellite constellation
- Mission Study / User Requirements input provided
- Launches start on 2011
- Multiple SAR satellites in constellation
- Follow-on to RADARSAT-2
- Meet government operational monitoring requirements*
- International Workshop Spring 2007

* Shouldn’t the U.S. express interest in partnering?
InSAR (NASA)

- Decadal Study Recommendations are published
- L-band interferometric SAR combined with a Laser altimetry mission recommended
- NASA-NOAA discussions on new technologies
- Exploitation of NPOESS SafetyNet ground system
• QuikSCAT images are routinely available and used on the Operations’ floors

• Guaranteed coverage

• Used similarly to Passive Microwave – large scale ice edge mapping, some typing in winter

• Detects concentration of about 10% -- close to SAR ice edge
Scatterometer Missions

- QuikSCAT Automatic ice detection – MYI, FYI, Melt, Freeze-up (Ngheim 2005 & 2006 - JPL)
- QuikScat Integration of winds and ice observations
- METOP’s ASCAT
 - C-band scatterometer
 - Launch delayed
- Indian Oceansat -2 – May provide continuity to QuikSCAT observations
QuikSCAT Sea Ice and Wind Vectors

Nghiem et al., 2006
Sea Ice Classes on Spring Equinoxes

Ice classes: Perennial (yellow-red), seasonal (cyan), mixed (green)
WINDSAT Sea Ice Products
Supplement SSM/I

- Transitioning NRL-DC implementation of SSM/I-like sea ice algorithms on WindSat
- Outperforms SSM/I in certain areas for identifying Ice Edge
- Improved concentrations
- Area Specific
- Validation in progress
A simple thermodynamics and ice redistribution model can estimate ice growth in the lead and the amount of ridging to the southeast.

Divergent ice motion results in the formation of the lead. Convergent motion (red) to the southeast (left in the image), is an area where ridging is occurring.
Cross indicates the location of R/V Palmer over an SSM/I sea ice concentration product near the time when it encountered MY ice in the Ross Sea and lost a magnetometer.
Passive Microwave Observations
Seasonal limitations well-known – limits tactical use during the most critical operational season

SSM/I

OLS

QuikSCAT
Buoy-based Age of Sea Ice

- More older, thicker ice.
- Later onset of melt, earlier onset of freeze.
- Winter and summer forcing is more important.

- Less older, thicker ice.
- Earlier onset of melt, more absorbed insolation, later onset of freeze, longer melt season...
- POSITIVE FEEDBACKS!

(Rigor et al., 2004)
NIC co-manages the US Interagency Buoy Program with UW/PSC and coordinates US Arctic buoy activities within the IABP.

Arctic buoy data are critical to NWS and many other users providing weather forecasts, NWP, and climate modeling.

Arctic buoy data are used by NIC for operational ice chart analysis and supports the validation of satellite observations and sea ice models.

As of January 2, 2007, there are 48 buoys reporting from 35 different locations across the Arctic.

White Trident Mission deploys buoys for USIABP/IABP over the Arctic from a C-130 (Possible final drop AUG07 / exploring alternatives)
USIABP Funding

- NOAA (variable $$, SVP buoys, Argos costs, SBIR, NCTP and NESDIS research support)
- NASA funding ($100k/year Cryospheric Program)
- NSF funding ($200K USIABP/IABP funded proposal now under NSF AON)
- ONR funding (being re-established at $25K/year and proposal to Ice-Diminished Arctic BAA under review)
- NAVO (White Trident Mission buoy deployments)

IABP Annual Meeting to be hosted by NIC tentatively on 24-25 May 2007
Buoy Deployments and Distribution

Weather Reporting Arctic Buoys
The distribution of buoy observing network is limited for the most part to the location of MYI over the Western Arctic. Distribution of MYI over the Western Arctic along the coast of Greenland, the Canadian Archipelago, and Alaska.

The distribution of the buoy observing network is limited for the most part to the location of the MYI over the Western Arctic.
IABP Deployment Plans for 2007 & IPY

The small green dots show the location of drifting buoys reporting on November 6, 2006. The yellow tracks show the expected drift of these buoys to September 1, 2007, with dots showing their estimated positions on April 2007 (pink) and August 2007 (red).

1. CMR/Statseil (March): 3 ICEXAIR Buoys
2. IceBridge (April): 13 IMB buoys, 1-3 Ocean buoys, 1 Met. Station, etc.
4. NPEO (April): 1-3 IMB buoys, 1-3 Ocean buoys, 1 Met. Station, etc.
5. DAMOCLES (Spring and Summer): 7 Ocean buoys, 2+ IMB Buoys.
6. US Navy Ice Camp (April): 24 GPS/ stress, 1 SITHOS 1 IMB, and 2 Ocean buoys
8. NABOS (Summer): 4+ Met. Buoys
10. US Naval Oceanographic Office WHITE TRIDENT Flight (August): 12 ICEXAIR (air drop) Buoys
11. USCG Healy (August/September): 4+ Met. Buoys
12. CCG Louise St. Laurent (Summer): 2 Ocean Buoys, 2 IMB Buoys
SBIR Inexpensive Airborne Expendable Ice Buoys (AXIB)

- Provides a low cost aircraft droppable seasonal buoy (with also surface deployment capability)
- Sensors/measurements include surface air temperature, surface pressure, GPS location, and Argos transmitter
- Operation in ice and open water through freeze/thaw cycles
- LBI, Inc. submitting proposal for phase II SBIR funding

Provide alternatives to White Trident C-130 drops over MYI
PIPS 3.0 improvements

- Multi-category, linearly remapped ice thickness
- Energy-based ice ridging
- New ability to predict areas of lead opening/closing for the warfighter, ice edge location, ice thickness and ice drift

NIC and CIS (under NAIS) are providing validation of PIPS 3.0 output for operational use

<table>
<thead>
<tr>
<th>Category</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>0.000 – 0.644</td>
</tr>
<tr>
<td>Category 2</td>
<td>0.645 – 1.391</td>
</tr>
<tr>
<td>Category 3</td>
<td>1.392 – 2.470</td>
</tr>
<tr>
<td>Category 4</td>
<td>2.471 – 4.567</td>
</tr>
<tr>
<td>Category 5</td>
<td>4.568 – 9.333</td>
</tr>
</tbody>
</table>
Will help identify areas where ridging, leads, or fractures may occur.
Better agreement between PIPS 3.0 and SSMI ice concentration versus PIPS 2.0 and SSMI is consistent across all months of 2003.

PIPS 2.0 receives T, S and currents from Bryan-Cox ocean model while PIPS 3.0 testing uses global NCOM T&S inputs only.
Coupling between the ocean and ice models more properly accounts for the momentum, heat and salt fluxes across the air/sea interface.

HYCOM and PIPS 3.0 Coupling (35 km)

Sea Ice Concentration
September 2003

PIPS 3.0 stand-alone
(no ocean)

PIPS 3.0 one-way
Coupled of T&S

SSMI observations

Too much ice
NIC Recent Accomplishments

• Conducted an International Sea Ice Modeling Workshop At National Ice Center in September 2006

• 33 Year Arctic Climatology released and recognized as outperforming climatologies based mainly on passive microwave

• Developed initial Sea Ice Thickness products for Arctic Submarine Lab

• NIC Science historical charts preservation and declassification project have secured paper charts at the National Archives
Arctic Sea Ice Climatology

- Arctic climatology from: 2006 National Ice Center (NIC) Arctic sea ice charts
 - Data Set 1972 – 2004
- NIC 33 year climatology charts published at the National Snow and Ice Data Center (NSIDC)
- Data derived from variety of imagery:
 - Radar, Visible, Infrared, Passive Microwave
- Relatively course products in early 1970s
- Increase in accuracy with increase in imagery resolution over time
 - Digital imagery mid 80s
 - RADARSAT Synthetic Aperture Radar (SAR) 1995
Sea Ice Trends

- Ice extent “… Falling below pre-1950 minima after about 1975.”
- Rate of decline in ice extent of “about 3.6% per decade” documented by satellites over the past 20 years
- 35 years of submarine ice draft (ice thickness below waterline) data shows a decline of 35% at the end of summer
- Abrupt loss of 14% of multiyear (older than 1 year) sea ice between 2004 and 2005

- Maximum ice extent normally occurs in March
- Minimum ice extent normally occurs in September
Absolute Maximum Ice Extent animation using entire NIC dataset for March 1972-2004
March Ice Extent 2005

2005 Ice Charts are not included in climatology data set
March Ice Extent 2006

2006 Ice Charts are not included in climatology data set
Absolute Minimum Ice Extent animation using entire NIC dataset for September 1972-2004
September 2006 Ice Extent

2006 Ice Charts are not included in climatology data set
NIC Hemispheric Ice Charts
Seasonal Change

13 March 2006

28 September 2006
NIC IPY Activities

• Providing sea ice charting and remote sensing support to the Arctic Submarine Lab Ice Camp 2007, which is expected to provide a unique multi-sensor sea ice thickness cross-validation dataset.

• Providing similar remote sensing support and coordination with other field activities in both the Arctic and Antarctic regions.

• Hosting a follow-on symposium on the Impact of an Ice-diminishing Arctic on Naval and Maritime Activities (July 2007).

• Producing of 33-Year Antarctic and Yellow Sea Climatologies
 - Antarctic Climatology is being funded by NOAA
 - Requesting funding from NAVO for the Yellow Sea climatology

• Coordinating the development of an Inexpensive Airborne Expendable Ice Buoys (AXIB) To provide a low cost aircraft droppable (also surface deployable) seasonal buoy.
• An Ice Camp is being established 200 NM Northeast of Prudhoe Bay, Mid-March to Mid-April

• UW Applied Physics Laboratory (APL) in charge of ice camp logistics in support of a 2 weeks classified (ASL) and a 2 weeks unclassified (NSF) camp.

• Unique collection of sea ice measurements under, over, and on the sea ice.

• NIC Science is providing coordination of remote sensing observations and imagery support during the camp.
R1 SWB Frequency in Beaufort Sea

Daily coverage will support operational RGPS during the ice camp
Spaceborne Observations of the Polar Regions during IPY

- The IPY provides an international framework for understanding high-latitude climate change and predicting world wide impacts.
- Spaceborne technology offers unique capabilities for obtaining essential data for predictive models.
- Use of current and soon to be launched earth observing satellites to develop broad spectral, medium and high resolution snapshots of the polar regions.
- IPY era spaceborne instrumentation represents a technological leap beyond the capabilities of the IGY.
• Support International Polar Year activities.
• Consolidation of NOAA’s Snow and Ice Operational IMS Product at NIC.
• Promote assimilation of NIC ice products into atmospheric, ocean, and ice forecast analyses and models.
• Enhance the Antarctic Analysis (weekly/partial concentrations).
• Explore Joint / Interagency snow & ice center of excellence with Army, Air Force.
• Further define and coordinate efforts to meet North American Ice Service (NAIS) sea ice remote sensing requirements.
Sea Ice Conditions Outlook

Continuing Changes in a Dynamic Environment

• Multi-year sea ice shrinking / compressing to western Arctic.
• Most of first-year ice will melt during summer.
 – Result: vast region of ice-free ocean in the east Arctic
• Diminished ice conditions may allow a seasonal trans-arctic sea route (Polar Passage)
 – Avoids territorial issues with either NW or NE Passage
• Daily mapping of sea ice (ice extent, ice coverage, ice type, surface melt) and wind over ice-free ocean necessary for sea ice forecasting.
• Increased uncertainty of ice conditions will complicate the development and validation of automated product generation.
• Monitoring of ice islands (Arctic tabular icebergs) may become more critical
• An increase in the number of icebergs in the Antarctic could affect sea ice forecasting and navigation in the Southern Ocean.
Questions?