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Overview
• Difficulty explaining origins of AI-based prediction a key barrier to adoption 

• Machine-learning (ML) models (basis for AI) often perceived as black boxes
• Notion prevalent in deep-learning (DL; e.g., Convolutional Neural Networks – CNNs)
• CNNs composed of interconnected layers; O(10M-100M+) trainable parameters
• Filters within layers trained to distill relevant features that map to some output

VGG16 CNN bottleneck architecture - 138M trainable parameters
Figure adapted from Cord et al. 2016

Presenter
Presentation Notes
Benefits in legal/policy domains, Viewed as opaque, difficult to understand
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Overview

• Operational users require explainable decision processes / knowledge of model 
vulnerabilities
• Predictions informing life and death decisions must be traceable
• Predictions of physical processes should depend on physically relevant features
• Vulnerabilities may be exploited to alter predictions

• Explainable AI techniques capable of conveying DL model behavior/vulnerabilities
• Analysis rooted in the visual information distillation process 
• Demonstrate physical features/concepts that the model relates to its predictions
• Provide understanding of a vulnerability to adversarial inputs

All topics presented represent areas of open research in the community.  
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Tropical Cyclone (TC) Classification CNN
• Model trained to categorize TCs

– Tropical depression (TD), Tropical Storm (TS), Cat 1 – Cat 5 Hurricanes
– Null class included of randomly pulled regions away from TCs

• Model only intended to highlight application of methods 
– Methods extensible to numerous environmental problems

• TC Data:
• 2017/2018 Atlantic & Eastern Pacific TCs – interpolated to hourly

• 2017 – NOAA Best Track Data 
• 2018 – CIRA RAMMB Archive 

• CNN Input
• GOES-East satellite images - 11.2 um band 
• Image chips centered on TC center of circulation
• ~14000 images from 71 TCs

TD TS HU1 HU2 HU3 HU4 HU5 

Maria TD-HU5 examples

Presenter
Presentation Notes
No need to replace automated dvorak technique, but this is a problem domain that is relatable for the sake of these methods.
RAMMB – regional and mesoscale meteorology branch 
600x600 was minimum – wanted to maintain storm structure while minimizing outside weather phenomena 
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Gradient Weighted Class Activation Mapping (Grad-CAM)
• Objective

• Determine if the model focusing on the most important features for prediction

• Visual explanation for CNN decisions 
• Indicates input image pixels most important to prediction of a class

• These pixels positively influence prediction of a given class

• Method (Selvaraju et al. 2017)
• Run image through CNN
• Gather activations – output of a CNN layer 
• Compute gradient of the predicted score for class of interest
• Global average pool the gradients – one avg. gradient for each filter in the layer
• Multiply activations by respective gradients, apply RelU

• Weights activations by how important they are to predicting the class of interest
• Results may be aggregated as layer mean or individual filter results can be examined
• Results viewed as heatmap of pixel importance on the input image

Michael as Cat. 4 (left), Grad-CAM heatmap (right; final conv. layer, 3rd strongest)

Presenter
Presentation Notes
Activations result of applying image filters learned by the CNN to image information) from a given layer
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Grad-CAM-based filter influence in TC CNN Final Conv Layer 
• Gathered weighted activation for all 256 filters in last layer of TC CNN

– Summed weighted activations for each filter
– Allows sorting of filters that produced most influential output to Cat. 4 prediction

Input: Michael as HU4

• Only 80/256 filters in final layer produced output with meaningful positive influence on the HU4 prediction
• The top filters may be 1+ orders of magnitude more influential to class prediction than remaining filters
• Behavior of active filters has implications for model-capacity

– Are some of the filters inactive or non-influential over all classes? Model may be deeper than necessary
– Are most filters active over all classes? Model may be too shallow
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CAM Heatmaps – Michael as TD – Cat. 4 by Conv. Layer

Inputs

Presenter
Presentation Notes
In general, by the last layer, the central core is important to the prediction, outflow regions are important. Interfaces around strongest convection. Banding interfaces. Things that are bad – maybe too much activation on outer cloud free areas. You’d hope main focus is on the storm features, but sometimes it is not by the last layer. 
Results local to the input image. Other methods are required to examine if a specific physical concept deemed important by the user is being utilized by the CNN.

Strongest activations in last column indicate that by the final conv later (conv2d_8), the model keys in on the core convective structure of the storm surrounding the eyewall. 
Especially on the expanded convective region on the east side of the eyewall. 
Earlier layers were keying on much broader regions. Edge detectors also apparent in earlier activations.


As one would hope, the central core structure of the storm was important to the HU4 prediction. 

Note 50th %ile CAM sometimes indicates no positive contribution – see slide 7
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Testing with Concept Activation Vectors (TCAV; Kim et al. 2018)
- Importance of Eye structure to HU4 predictions

• Gather known HU4 
class images.

• A few hundred here.
• Taken from training 

set.  

Determine Concept Activation Vector
1. Gather concept images (eye; N>50)
2. Gather negative images
3. Gather layer activations for 1,2
4. Train linear classifier on activations to obtain CAV

Separating 
hyperplaneCAV (points towards 

“Eye” activations)

Does CAV tend to point in opposite direction of gradient vectors?
If so, CAV points in direction of increasing probability of correct class identification 

Calculate gradient of model loss function for HU4 class w.r.t. 
activations from final layer

Gradient vectors point in direction of decreasing 
probability of correct class identification

Gradient vectors

Concept images Negative images

Negative images from ALOI 
(Geusebroek et al. 2005)
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“Eye” Concept Activation Vectors

• Kim et al. 2018 suggests a concept is important if CAVs point opposite of >50% of 
gradient vectors

• 87% of HU4 gradient vectors point in opposite direction of “Eye” CAV
• Eye important to prediction of Category 4 TCs

• 29% of TD gradient vectors point in opposite direction of “Eye” CAV
• Eye not important to prediction of TD class

• Results obvious for this test case, but:
• Such methods extensible to physical features deemed most important by the user 

for a given model and class.
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Adversarial Attacks
• Purpose of most adversarial attacks to cause erroneous model inference

• Occurs at testing or deployment stage
• Targeted     – misguide to specific class
• Untargeted – misguide to arbitrary class

• Adversarial generation noise to images causing misclassification
• Noise often imperceptible to humans
• Adversarial examples expose and exploit flaws in decision function of model
• Model-to-model transferability possible (Papernot et al. 2016) 
• Implies model security risk even when attacker has no access to victim model

• Operational use of CNNs requires knowledge of vulnerabilities/robustness 
• May require ability to detect, screen, and remediate adversarial inputs

Fast Gradient 
Sign Method 
(FGSM) -
Goodfellow et 
al. 2015

Presenter
Presentation Notes
Cross-model generalization – victim model has different architecture than model generating attacks
Cross-dataset generalization – victim model trained on different training set than model generating attacks

It is the direction of the perturbations that matters – latching perturbations on to input such that the you align with the gradient vector points in a direction of increasing loss. 
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Adversarial Examples
Pick the original image. Four images are adversarial.

Presenter
Presentation Notes
CarliniWagner was a targeted attack – tried to push prediction to “NULL”. When it worked, it worked well, but it was effective at raising the probability of NULL.
If you allow the strength 
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Adversarial Examples

Original DeepFool FGSM NewtonFool BIM

HU4 HU3 HU3 HU3 NULL

Adversarial 
Noise

• Adversarial methods used here
• Fast Gradient Sign Method (FGSM) – Goodfellow et al. (2015)
• NewtonFool – Jang et al. (2017)
• DeepFool – Moosavi-Dezfooli et al. (2016)
• Basic Iterative Method (BIM) - Kurakin et al. (2016)

Presenter
Presentation Notes
BIM was a targeted attack – tried to push prediction to “NULL”. When it worked, it worked well, but it was effective at raising the probability of NULL.
If you allow the strength 

Adversarial examples are quite interested in perturbing input along the direction of increasing loss. It looks like the all perturbations (but most visible for Deep/Newton Fool) are perturbing cloud free regions of the storm. Although the end predicting is HU3, perturbing the cloud free areas is forcing the model to attend signals aligning with the direction of increasing loss. 
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Adversarial Examples

Original DeepFool FGSM NewtonFool BIM

HU4 HU3 HU3 HU3 NULL

Attack Top-1 Accuracy (%) 
N=123

Original (clean) 100

DeepFool 40.7

FGSM (min ϵ [0.01,0.3]) 0.81

NewtonFool 0.00

BIM 38.2

Varying levels of success in altering Michael Top-1 accuracies

Presenter
Presentation Notes
BIM here was a targeted attack – tried to push prediction to “NULL”. It took a lot to get the model to falsely predict NULL, because as will be seen soon, the model was more robust to adversarial attacks for NULL than the other classes
Model did a better job generalizing Null
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Hurricane Michael Predictions
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Grad-CAM Heatmaps – Michael – Cat. 4 + Adversarial Noise

Original Input Image CAMs Adversarial Input Image CAMs
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Original prediction: HU4
Adversarial prediction: NULL – note less focused, activations 17 orders of magnitude weaker
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Quantifying Model Robustness
• Metrics for quantifying model robustness

• Minimal perturbation required for misclassification (most common)
• Sensitivity of loss function to input changes
• Sensitivity of logits w.r.t. input changes

• Empirical robustness (ER – minimal input perturbation required for success of given attack)
• Euclidean distance between successful adversarial & original input (Moosavi-Dezfooli et al. 2016)
• Larger ER  for a given attack type, larger perturbations required

Class ER
TD 0.013
TS 0.016

HU1 0.011
HU2 0.012
HU3 0.013
HU4 0.011
HU5 0.011
NULL 0.133

• NULL class order of magnitude more robust to FGSM 
• Random cloud fields and cloud free regions
• Model built more robust decision boundary for NULL
• Leaves less opportunity for adversaries to exploit deficiencies

• TC classes built on finite number of storms
• Limited data causes deficiencies in space of storm structures
• Similarities from class to class problematic
• Easier to exploit deficient decision boundaries 

• Model hardening possible through fine-tuning on adv. examples
• Hardening HU4 class for FGSM attack
• ER: 0.011  0.127

Presenter
Presentation Notes
Logits are values coming out of the model before final activation function is applied to get a prediction. Softmax is applied to logits to get class probabilities 
Caution – large transformations of the original samples has a counter productive effect on model generalization, so make sure FGSM strength isn’t too crazy

Hardening helps regularize model
Correct classification only occurs on a thin manifold close to where x occurs in data
Models fail when input is in a space with low probability in the data distribution
Hardening allows a model to represent a function resistant to adversarial perturbation (like the movie Inception when people are trained to defend against adversarial ideas being implanted in brain while dreaming)
Adversarial inputs are unnatural, but they expose flaws in models decision function
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Adversarial Defense Methods
• Increase robustness with model hardening

• Training on adversarial imagery (fine-tuning or from start)
• Shown to offer regularization

• Noise data augmentation during training 

• Reduce adversarial noise through data preprocessing at test/deployment
• E.g., filter noise by reducing bit depth, spatial smoothing, data compression

• Runtime detection
• Additional classifier fit on adversarial and clean data (activations or inputs)

See Nicolae et al. 2018 for details on common defense methods.

Original Adversarial
HU1 HU2 HU3 HU4 HU5 NULL TD TS

Original 0.994 0.002 0.002 0.000 0.000 0.000 0.000 0.002

FGSM 0.261 0.080 0.601 0.000 0.000 0.000 0.000 0.058

PNG 0.261 0.080 0.601 0.000 0.000 0.000 0.000 0.058
JPEG-
Q100 0.545 0.058 0.333 0.000 0.000 0.000 0.000 0.063

JPEG-Q1  0.712 0.055 0.108 0.000 0.000 0.001 0.006 0.117

Presenter
Presentation Notes
Add REFS
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Summary
• Grad-CAM

• Capable of highlighting input pixels most important to class prediction
• Helpful in diagnosing filter contributions to class prediction
• Results local to input images
• May be used to flag certain potential adversarial attacks

• TCAV
• Offers general method to test if a concept deemed important by the user is 

significantly important to the prediction of a given class 

• Adversarial
• ML models can be highly vulnerable to adversarial attack

• Extends to shallow and deep architectures 
• Attacks expose weaknesses in generalization of decision boundaries
• Fine-tuning allows model to generalize such that decision-boundary flaws are 

remediated

• Future efforts
• Extension of explainable AI approaches to regression rather than classification
• Visualization of decision-boundary improvements
• General methodology to increase attack-agnostic robustness 

Presenter
Presentation Notes
Hardening helps regularize model
Correct classification only occurs on a thin manifold close to where x occurs in data
Models fail when input is in a space with low probability in the data distribution
Hardening allows a model to represent a function resistant to adversarial perturbation (like the movie Inception when people are trained to defend against adversarial ideas being implanted in brain while dreaming)
Adversarial inputs are unnatural, but they expose flaws in models decision function
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EO Tropical Cyclone CNN
• Model Architecture

– 4 convolutional layers
– 1 dense layer mapped to TC classifications
– 52M trainable parameters
– Regularized via dropout and data augmentation

• Prevents overfitting to training data
– Test accuracy: ~90%
– Weights saved at epoch 40

Presenter
Presentation Notes
25% dropout, augmentation with height and width shifts, zooms, and shears. Model shows a reasonable balance between overfitting and underfitting. 
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EO Tropical Cyclone CNN
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 198, 198, 32)      896       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 99, 99, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 97, 97, 64)        18496     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 48, 48, 64)        0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 46, 46, 128)       73856     
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 23, 23, 128)       0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 21, 21, 256)       295168    
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 10, 10, 256)       0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 25600)             0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 25600)             0         
_________________________________________________________________
dense_1 (Dense)              (None, 2048)              52430848  
_________________________________________________________________
dense_2 (Dense)              (None, 8)                 16392     
=================================================================
Total params: 52,835,656
Trainable params: 52,835,656
Non-trainable params: 0
_________________________________________________________________

Presenter
Presentation Notes
25% dropout, augmentation with height and width shifts, zooms, and shears. Model shows a reasonable balance between overfitting and underfitting. 
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