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Topics for Discussion

e Conrad Blucher Institute

* History of Artificial Intelligence & Machine Learning
* Broadly
* For Environmental Sciences
* Through the Lens of the AMS Al Committee Activities 1985 -

* ML Methods Applied to Environmental Cases 2000’s, 2010’s

* Neural Networks / Water Levels

 Random Forests / Sea Turtle Cold Stunnings
* Deep Learning (SDAE) / Lightning Predictions
* Deep Learning (3D Conv) / Coastal Fog

* Physics? Changes & Constants in Al



CONRAD BLUCHER |
INSTITUTE

RV

FOR S1

YING

AND SCIENCIH

Labs/Units

* Operations

 Measurement Analytics Lab (MANTIS)

e Coastal Dynamics Lab

e Geospatial, Optimization and Analytics Lab (GOAL)
e Spatial {Query} Lab (S{Q}L)

* Texas Spatial Reference Center

e Supports BS, MS, PhD programs

Coastal
Al




What is Artificial Intelligence?

* From Wikipedia

* In computer science, artificial intelligence (Al), sometimes
called machine intelligence, is intelligence demonstrated
by machines, in contrast to the natural intelligence displayed by
humans.

* Leading Al textbooks define the field as the study of "intelligent
agents": any device that perceives its environment and takes actions
that maximize its chance of successfully achieving its goals.

* Colloquially, the term "artificial intelligence" is often used to describe
machines (or computers) that mimic "cognitive" functions that
humans associate with the human mind, such as "learning" and
"problem solving”



https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Human_mind

Artificial

Intelligence Artificial Intelligence
Computers solving difficult tasks

through experience and observations

Machine Learning
Adaptive models learn to improve
performance on a task given

experience Expert Systems

Deep Learning
Neural networks with
multiple specialized layers for
encoding structural
information

Courtesy David John
Gagne (NCAR) & Amy
McGovern (OU)




History of Al/ML

40’s: Similar concepts envisioned by Vannevar Bush after World War Il, “As We May
Think”, the Memex

50’s: Ideas spurred by Alan Turing “can machines think?”, “Computing Machinery and
Intelligence” and Claude Shannon (Theseus electromechanical mouse) in the 1950s

1955: “Artificial Intelligence” term coined by John McCarthy (academic summer school)

Ups and downs : 50°s-mid 70s 2A mid 70’s-mid 80’s N mid 80’s-

mid 90’s A 2000’s N 2010’'s A A A

In the environmental sciences start at least in the 80’s likely early 70’s

Needs: - a lot of data, e.g. atmospheric sciences are a good “beachhead” for Al
- a nonlinear system



The 1956 Al Summer School

School Al Topics: A PROPOSAL FOR THE

e Automatic CompUterS DARTMOUTH SUMMER RESEARCH PROJECT

ON ARTIFICIAL INTELLIGENCE
* How Can a Computer be Programmed to Use a

La nguage J. McCarthy, Dartmouth College

e N Net M. L. Minsky, Harvard University
euron Nets N. Rochester, I.B.M. Corporation

. Theory of the Size of Calculation C.E. Shannon, Bell Telephone Laboratories
* Self-Improvement

_ August 31, 1955
e Abstractions

o RandOmnESS & Creativity http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf

Early Foci: But Al for Environmental Sciences:
 Simulate, understand the human brain, ¢ Different focus

relationship between humans and e Study & prediction of nonlinear systems
machines, robotics, ...


http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf

Boulder 1987: AIRES Il

meeting review

Summary Report on the Second Workshop on Atrtificial Intelligence Research in the
Environmental Sciences (AIRES), 15-17 September 1987, Boulder, Colorado

Rosemary Dyer' and William Moninger,>

Meeting Convenors

Goals:
e Forum for ongoing Al work in environmental
sciences & promising directions
* Give newcomers survey of state of the art
Other info:
* 80 participants
* Meteorology, hydrology, environmental protection,
and uses of intelligent data base
* Emphasis on expert systems & their inference
engines
* One mention of neural nets (K. Young, univ. Arizona)

AMS Al Workshop and Short Courses: 1985 — Boston 2020 .....

Bulletin American Meteorological Society

TABLE 1. Past and current Al work in environmental science as of

January 1988.
Al Systems
Number Subject Matter
22 Environmental forecasting
3 Weather diagnosis
6 Automated pattern recognition
9 Assistance to operational users of
environmental data
5 Assistance to environmental
researchers
1 Tutor for meteorology students
15 Hazard response, short and long term
8 Hydrology and crop management
Supporting Studies
., Investigations of cognitive processes

of environmental forecasters

NOTE: For a detailed list of each of these systems and studies,
contact William R. Moninger, NOAA/Environmental Research Lab-
oratories, NOAA, R/E2, 325 Broadway, Boulder, CO 80303.

https://journals.ametsoc.org/doi/pdf/10.1175/1520-0477-69.5.508



https://journals.ametsoc.org/doi/pdf/10.1175/1520-0477-69.5.508

Hail Forecasting: Human vs Regression vs Expert System

“The future in weather forecasting is a

partnership between person and
machine and an understanding of the
capabilities and limitations of both is

critical to make the partnership
effective” [1]

e 1988 Limited Information Hail
Forecasting Experiment

* Comparison
* Expert System
* Meteorologist
* Weighted Sum Model

sample case
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[1] Stewart, T. R., Moninger, W. R., Brady, R. H., Merrem, F. H.,
Stewart, T. R., & Grassia, J. (1989). Analysis of expert judgment in a

hail forecasting experiment. Weather and forecasting, 4(1), 24-34.



https://journals.ametsoc.org/doi/abs/10.1175/1520-0426(1988)005%3C0144:AAPESF%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/pdf/10.1175/1520-0434%281989%29004%3C0024%3AAOEJIA%3E2.0.CO%3B2

Experiment

* Interested in human processing and its limitations and comparisons
 All forecasters (7) & models provided the same information

* 75 cases per forecaster drawn from 453 Doppler radar volume scans
(NOAA PROFS) = 5 categories from unlikely to severe storm
predictions including hail and winds within 30 mins

 Target: in situ observations of small (14.7% >1/4") and severe (5.3%
>3/4”) hail

* Expert system: Hail prediction based on 250 rules based on the 7 cues
predicting storm category 1-5 (also tornadoes and strong winds)

* Expert system development very time consuming



Performance Comparison

* Meteorologists predictions were consistent with good correlation
between forecasters (typically >0.8)

* Regression analysis of meteorologists:
* Accounting 80% to 92% of variance in meteorologists forecasts

* Correlations expert system — meteorologists
* Any hail: 0.70 - 0.85
e Severe hail: 0.63-0.79

* When models applied to other cases:
* Regression models performance similar to respective forecasters
* Expert system good for severe hail, low for any hail, not as good as regression

* But experiment designed with limited information, not realistic
conditions



PREPRINTS

FirsT CONFERENCE ON

ARTIFICIAL INTELLIGENCE
11-16 JAaNUARY 1998 PHOENIX, ARIZONA

NSSL 2D Mesocyclone Detection

Simulated Cyclonic/Convergence Doppler Signatures

AMERICAN METEOROLOGICAL SOCIETY

AMS Al Conferences
1998 -2020

1998: 8 Sessions — 47 Presentations

» Artificial Neural Nets for Precipitation Forecasts

» Artificial Neural Nets for Satellite Retrieval and Pattern
Recognition

* Climate Classification and Prediction

* Decision Aids and Natural Language Systems

* |mage Processing

* Poster

 The Human Element in Forecasting

* Intelligent Statistics (joint with PROB/STAT)

Including:

“Neural Networks as a Generic Tool for Satellite Retrieval
Algorithm Development and for Direct Assimilation of Satellite
Data into Numerical Models”, V.M. Krasnopolsky



Use of Al Methods in Time

* Methods: Expert Systems, Fuzzy Logic, Neural Nets, Tree based methods,
SVMs, Genetic Algorithms, Genetic Programming, Deep Learning, ...

* 1987: Workshop, mostly expert systems, 1 mention of Neural Nets

e 1998 (47 presentations)
* Neural Nets (49%) — Expert Systems (17%) — Fuzzy Logic (9%) — Tree Based (6%) —
Other (19%)
* 2008 (32 presentations)
* Neural Nets (27%) — Tree Based Methods (14%) — SVMs (13%) — Genetic
Algorithms (9%) — Fuzzy Logic (5%) — Expert Systems (3%) - Other (34%)
e 2019 (101 presentations)

e Deep Learning (36%) - Neural Nets (10%) — Tree Based Methods (10%) — K-Means
(3%) - SVMs (2%) — Other (38%)



Al Methods at AMS Al 2020

2020 Presentations (2019)

e Deep Learning ~50% (36%)

* General Machine Learning: ~15%

Random Forests ~10% (had other tree-based methods at 10%)
Not Directly Al Presentations ~9%

Multiple Machine Learning Methods ~8%

Shallow Neural Nets ~5% (10%)

Other methods (<3%) Self Organizing Maps, Support Vector Machines, Fuzzy
Clustering, Genetic Programming



Research topics

2020 Presentations Topics

* Many: Weather Forecasts — Precipitation - Climate - Tropical Cyclones

» Several: - Hail Classification — Energy — Space Weather — Tornadoes — Clouds —

S2S — Air Quality — Satellite Imagery — Radar Imagery — Computer Science &
Methods

* Cool topics: Detecting Birds in Radar — Economic Value (2) — Water Quality (2)

* Other trends:
* Interpretable Al
* Physics guided/aware Al
* Education & broad initiative talks
 Data sets building/curation



Growth of Al: Increase in Attendance at AMS Al

# Presentations at AMS Al Conferences

Inflection Point
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Growth of Al: Increase in Attendance at Al/CS Conferences

Attendance at large conferences (1984-2019)
Source: Conference provided data.

15,000 .« CVPR
, , o 1JCAI
Inflection Point AAA|
~2013-2014>? e NeurlPS
" — |IROS
Q10,000 --ICML
© ICRA
C
2
©
©
—
ISt
= 5,000
=
Z From: “The Al Index 2019
Annual Report”, Al Index
Steering Committee, Human-
Centered Al Institute, Stanford
1985 1990 1995 2000 2005 2010 = 2015 University, Stanford, CA,

December 2019



Start of Al at TAMUCC-CBI: Water Level Predictions

ft above
Hean Sea Level
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Start of Al at TAMUCC-CBI: Water Level Predictions
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Shallow Neural Networks Operational Predictions

Comparison of 24 h ANN predictions with measurements for Corpus Christi Naval Air Station

\
o o
[=)) ~1
T
|

=
in

=2
.

ik

' [‘\ | -

Water Levels (m)
o
L¥)

=
2

Water Levels (m)
o
thn

T
= =

=
=

[=]

1
75 80 85 90 95 100 105 110 115 120 125
— Tulian Day, 1997

05 I ! I ! I ! I —
- 50 100 150 200 250 300 350 400
Julian Day,1997

Cox, D. T., Tissot, P.E. and Michaud P. (2002). Water Level Observations and Short-Term Predictions Including Meteorological Events for Entrance of Galveston Bay, Texas. Journal of Waterway,
Port, Coastal and Ocean Engineering, 128-1, 21-29. doi: 10.1061/(ASCE)0733-950X(2002)128:1(21).

Tissot, P.E., Cox, D.T. & Michaud, P.R. (2003). Optimization and Performance of a Neural Network Model Forecasting Water Levels for the Corpus Christi, Texas, Estuary. Proceedings of the 3
Conference on the Applications of Artificial Intelligence to Environmental Science, part of the 2003 American Meteorological Society Annual Meeting, Long Beach, California.



Operational Neural Network Predictions Combining
Gridded Model Predictions & Real Time Measurements

Real Time Environmental Prediction of
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Shallow Neural Networks Operational Predictions

ANN Multiple O0ffset and Persistent Model MWater Level 12 Hour Predictions Past Performance
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Meters

Relative Sea Level Rise: Galveston Pier 21

B771450 Galveston Pier 21, Texas 6.37 +/- 0.2Z24 mm/yr
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Inundation Frequency

Probability of at Least one Innundation

100% I 2070: 99%

While sea level
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January 2010 Cold Spell
L ————————

——

Water Temperatures During January 2010 . :
Cold Episode Goa!. avolid barge
traffic when water
o || / temperature is below
o s \\ a 8°C (46.4F)
= 52F '
§ 50 F \k ~
E a8F : 2
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8 ur | N\ . 1
= —\ ]\ — Laguna viadre Performance: maximum
42 F i == Gulf of Mexico . .
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Time predictions).
Closing advice issued Thursday evening Jan. 7 Fypoenic stuning of green Seé Grtis i & western Gulfof Mexico
for Friday evening January 8, 10:00PM through foraging habitat. PLOS ONE 12(3): €0173920.

. https://doi.org/10.1371/journal.pone.0173920
Sunday January 10 12'OOPM http://journals.plos.ora/plosone/article?id=10.1371/journal.pone.0173920



http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173920

anuary 2010 Cold Spell

* Model used during January
8-10, 2010 to voluntarily
cease barge traffic in the
Laguna Madre

« Economic value of $21,000
- American Commercial
Line, Blessey Marine
Service and Florida Marine
Transporters

From the Wheelhouse

Voluntary Tow Stoppage in Laguna Madre

The Laguna Madre reach of the Gulf Intracoastal
Waterway is a very unique and fragile coastal
ecosystem spanning the southern Texas coast
from Corpus Christi to Brownsville. Its average
depth is two to three fest, except for the nine to ten
feet of deep water in the Intracoastal Waterway.

Prior to the arrival of the Intracoastal Waterway,
the Laguna Madre was a hyper-saline “deserted”
body of water. Today, the water in the Laguna is
home to the clearest water and one of the most
productive game fish ecosystems anywhere. The
Lower Laguna Madre is home to the Texas State
Record Speckled Trout, a 37-incher and almost
16 pounds, caught by Carl Rowland in May
2002. It is arguably the "Mecca” for all inland
saltwater fishing enthusiasts who seek the largest
trout of their lives in its waters.

When the strong northers of the south Texas
winters arrive, on rare occasions the water
temperature in the Laguna Madre reaches
the danger zone for these prized game fish,
endangering them and the fature fish crops
they bear. This temperature seems to be around
42 degrees Fahrenheit. It usually takes days of
extremely low temperatures to drive the water
temperature to these levels, but it does happen.
During the winter of 1989, an extremely hard
freeze hit the area with several days of sub-
freezing temperatures. Results were a devastating
fish kill that virtually wiped out the game fish
population in the Laguna Madre. It took several
years before stocks returned to normal levels.

Biclogists have learned that when water
temperatures in the normally shallow expanse
of the Laguna fall to these low levels, fish head
for the safety of warmer waters, deep in the
Intracoastal Waterway. They also become very
lethargic during these times and cannot escape
predators or the wheels of our towboats as easily.

As a result of our work several years ago to
address certain threats to the GIWW in the
Laguna Madre, GICA fostered a relationship
with the Coastal Conservation Association, the
Gulf Coasts main sport fishing representative
body. That “partnership” began as an adversarial
relationship over dredging practices used to
maintain the waterway. After many discussions

The Connecting Link, Vol.10, Iss. 1 (2010):

http://www.gicaonline.com/media/newsletters/newsletter1001.pdf

and meetings, we found common ground where
both associations could help one another to keep
the waterway functioning for both recreation
and commerce.

We found common
ground to help
keep the waterway
functioning for
both recreation
and commerce

‘We found that during these rare times of extreme
cold, the barge industry might assist in reducing
game fish mortality by voluntarily stopping
transits of the Laguna Madre. GICA brokered this
idea among our members and most all seemed
to favor a brief stoppage of commerce in order to
help. We had the opportunity to try this concept
out for the first time during the weekend of
January 9-10, an extremely cold period in south
Texas. Support for the idea was strong among
our members. American Commercial Lines,
Blessey Marine Service, and Florida Marine
Transporters actually stopped or held tows for
the requested period from January 9 through
Monday morning, January 11. Additionally,
AEP, Cenac/TEPPCO, Brownwater Marine,
and Kirby Corporation all responded favorably,
indicating they would support a voluntary
stoppage of traffic if they had equipment in the
area. We don't foresee this event happening more
than once or twice in a year, or it lasting over 72
hours at most.

We thank everyone who made economic
sacrifices and those who agreed to help in the
future. We hope this innovative partnering
effort serves to build a stronger bond between
our industry and the sport fishing community,
with the common goal of keeping the GIWW
maintained and productive for us all.

Gulf Intracoastal Canal Association




Automated System: February 3-5, 2011 Cold Front

Advice for start of traffic Interruption: 2-3 06:00 Advice for end of traffic Interruption: 2-5 18:00

Bird Island Basin ANN Temperature Model Forecast Bird Island Basin ANN Temperature Model Forecast
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Random Forests: Variable Importance

Number of Times Chosen

Number of Times Chosen
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Variable Variable Random Forests developed by Leo Breiman

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.


https://www.machinehack.com/course/machinehack-practise-5-random-forest-regression/
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Imagenet/Deep

The data that transformed Al

research—and possibly the world Learnin g

( : F'L:f",','ﬁ"‘"?“"

2006 Fei-Fei Li: “We’re going to map out the
entire world of objects.”

2006 Geoffrey Hinton paper on deep belief
nets (and others)

2009 Imagenet dataset and competition: which
algorithm can identify objects in the dataset’s
images with the lowest error rate.

2010-2017: Accuracy in classifying objects in
the dataset rose from 71.8% to 97.3%.

2012: Hinton’s team wins the competition with
AlexNet, 10.8 percentage point margin!

Sign up for the Quartz FROMOUR CBSESSION .
Dty Biiat esant Machines with Brains >

, Fei-Fel Li: “Data will redefine how we
Reference: Quartz, July 26, 2017, Dave Gershgorn:_https://qz.com/1034972/the- think about models.”
data-that-changed-the-direction-of-ai-research-and-possibly-the-world/



https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
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61.18%
Popaalanty

Imagenet/Deep Learning

* Needs millions of images

 The datais key

* Needs large computational
power

* Could not have happened 15-
20 years ago

* From cats and dogs to cancer
detection!

“If the artificial intelligence boom we see today could be attributed to a single
event, it would be the announcement of the 2012 ImageNet challenge results”

=% \dansa

References:

Deng, Jia, et al. "Imagenet: A large-scale hierarchical image
database."” 2009 IEEE conference on computer vision and
pattern recognition. leee, 2009.

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton.
"Imagenet classification with deep convolutional neural
networks." Advances in neural information processing
systems. 2012.



A Deep Learning Model to Predict
Thunderstorms within 400 Km?
South Texas domains
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Deep Learning: Lightning Predictions

Unsupervised feature learning

| Performance comparison vs size of bottleneck layer
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Kamangir, H., Collins, W., Tissot, P. & King, S. (2019). A
Deep Learning Model to Predict Thunderstorms within 400
km2 South Texas Domains" . Meteorological Applications,
accepted.

Collins, W., & Tissot, P. (2015). An artificial neural network

Logistic Regression model to predict thunderstorms within 400 km2 South
\ Classifier | Texas domains. Meteorological Applications, 22(3), 650-
Y 665.
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Dimension Reduction: PCA vs Deep Learning (SDAE)

3D Scatter Plot of SDAE Features. 3D Scatter Plot of PCA Features.
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Table 8. Performance results of the deep learning neural network (SDAE) and principal component analysis (PCA) based classifiers developed in this study, the
shallow neural network of Collins and Tissot, 2016 (CT2016), and the corresponding performance of the operational forecasters (NDFD) for 12hr prediction.

POD F FAR CSl1 PSS HSS ORSS CSS
Box 73
SDAE 0.82 0.07 0.36 0.55 0.74 0.66 0.96 0.60
CT2016 0.86 0.29 0.90 0.10 0.57 0.12 0.88 0.09
NDFD 0.91 0.23 0.86 0.14 0.68 0.19 0.94 0.14

PCA 0.89 0.42 0.94 0.05 0.48 0.05 0.84 0.05



Ongoing Research : 3D CNN

Deep Learning for Marine/Port Fog Predictions:
* Develop method to combine

* Daily SST maps

* High frequency coastal measurements
* Numerical weather predictions

* To predict marine advection fog

* Ongoing contracts to install visibility sensors and other instrumentation

Concat of 00, 03 and 06 hour prediction

Input cube size : 32 x 32 x 300
Conv: 3x 3 x7 »
BN-ReLU

Number of filters: 16

Output cube size: 32 x 32 X 300 X 16

Developed by Hamid Kamangir (CBI), Hue Dinh (COSC), Waylon Collins (WFOCC), Scott King (COSC), Niall Durham (CBI)

3D Convl

Input cube size :
32x32x%x300x16
Conv:3x3 x5
BN-ReLU

Number of filters:
32

Output cube size:
32 % 32 %300 x 32

3D Conv?2

@3 x3%x3
_ #ea

3D Conv3

. 300

Input cube size :
32x32x300x 32

Input cube size :
32 x32x300x 64

Conv:3x3x3

BN-ReLU Convert to 2D image
Number of filters:

64 Output cube size:
Output cube size: 32 % 32 % 19200

32 x32x300x 64

2D Convl

@3 x3
#64

26

Input cube size :
32X 32x 19200
Conv: 3 x 3

ReLU — Max pooling

Number of filters:
32

Output cube size:
15 x 15 x 32

26

C

Final feature map

24

24

Input cube size :
15 x 15 x 32

Dense to 256
Dropout (0.4)

Dense

256
128

Dense to 128
Dropout (0.4)

Softmax

Output



Combining High Res NWPs, Satellite Imagery & Local
Measurements for Ensmeble ML Predictions

Custom Al Ensemble Models

Environmental >® £ (X,+by)
Measurements, e.g. Time . \ f

Series, Satellite Imagery, o @_\

Local Weather
Driven
Environmental
Predictions with
Confidence
Intervals

: \ J (Xy1tb, 1)
H o

o
10 Neurons

Ensemble of
Predictions

High Res Numerical
Weather Predictions

Inputs Hidden Layers Output Layers



Where is the Physics?

* Performance vs. interpretability
* Nonlinear systems

* incorporating domain-knowledge in model design:

* Feature selection
e Data set management (training — validation — independent testing)

* Physics-constrained Al
* Include Physics in loss function: Loss Function = Training Loss + Physics Loss
* Other methods being investigated

Karpatne, A., Watkins, W., Read, J., & Kumar, V. (2017). Physics-guided neural networks (pgnn): An application in lake temperature modeling. arXiv preprint
arXiv:1710.11431.

Wau, J. L., Kashinath, K., Albert, A., Chirila, D., & Xiao, H. (2019). Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical
systems. arXiv preprint arXiv:1905.06841.

Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2019). Explainable Machine Learning for Scientific Insights and Discoveries. arXiv preprint arXiv:1905.08883.



Climate change in the 21st Century: a signal-to-noise problem Exa m ple:
emem—ee | Elizabeth Barnes,
7 BenToms &
o Imme Ebert-

|+ E— U phof'f (CSU)

How can we tell which changes are
SIGNAL and which are NOISE in our
one observed earth?

Train ANN to predict the year of a map

Observed

present-day
trends
Inp();fllsv\)/er Hidden layers Output layer
(blue) (red)
Kay et al. (2015) Each yellow neuron =
temp at one grid poi'n/t’_,,-"'
[ J \
X . ) ''''' Year estimate
° (1920, 1921, ...
. 2099, 2100)

Core Science Keynote presented at o

AMS Al 2020, Boston

Viewing Climate Signals through an Al Lens, We use 2 hidden layers with 10 units each.
Elizabeth Barnes et al. smesse i eRD



Viewing Climate Signals through an AI Lens (Core Science Keynote)

From Elizabeth Barnes, Ben Toms & Imme Ebert-Uphoff
AMS Al 2020, Boston

A Visualization Tool: Layer-wise Relevance Propagation

Year = 2025

Relevant Regions for Predicting Year from Temperature Map
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Which regions are relevant for correctly
predicting a specific year?

LRP for geoscience described in
Toms, Barnes & Ebert-Uphoff (2019)

Elizabeth A. Bames




Constants — Changes ...

 What has changed:
 Computational Capabilities
* Al Methods
 Number of Al Practitioners

 What has not changed much:
 Topics Studied
 Fundamentals: Bias — Overfitting — Data Preparation — Data Management (training
— validation — testing)
* Keep in mind:
* Fair Comparisons (e.g. new model on latest data vs existing operational model...)
* We are studying nonlinear systems: substantial part of the grey in the “boxes”



Questions/Discussion

L]

LG 16 TLLTRl




Abstract

The field of Artificial Intelligence (Al), including applications in the environmental sciences, is evolving at an accelerating pace. Its progress
has been made possible by developments in the computer sciences, the availability of larger and more comprehensive environmental data
sets, and the ever-increasing availability of affordable computing power. The presentation will start with the early days of the field,
including how the term was coined by John McCarthy. We will then cover the progression of the field, including its ups and downs,
through a series of examples.

The American Meteorological Society Al workshops and conferences allow to track this progression. Expert systems were the method of
choice in the eighties while Neural Networks took over in the nineties followed by a broadening of the methods including fuzzy logic, tree-
based methods, genetic algorithms, support vector machines... At the 2019 and 2020 AMS Al conferences deep learning became by far
the method of choice with 36% and over 50% of the presentations based on this new method. We will trace back this explosive growth to
its roots including Imagenet, AlexNet and the importance of the datasets in a sense driving the development of these methods.

While the Al methods have changed considerably over the years, the topics not so much. The first AMS Al conference in 1998 included
talks on precipitation predictions, satellite retrieval and pattern recognition, climate classification and prediction, image processing,
decision aids and natural language systems. We will introduce selected environmental applications and methods developed at the Conrad
Blucher Institute (CBI) to provide local operational predictions including for water levels, coastal flooding and a model designed and
implemented to predict the cold stunning of sea turtles. These methods combine real-time environmental measurements and numerical
weather predictions, typically from NOAA, as the predictors to different types of Al models.

We are expecting the fast growth of Al/ML to continue and as the method is becoming one of the main approaches to better predict and
gather a deeper understanding of a wide variety of complex and nonlinear processes in the earth sciences. The presentation will conclude
with the introduction of some of the present Al related research questions such as the quantification of uncertainties, interpretability,
incorporating domain-knowledge in model design and the further potential for Al applications in the environmental sciences



Philippe Tissot

Philippe Tissot is the Interim Director of the Conrad Blucher Institute and an Associate Research Professor at Texas
A&M University-Corpus Christi. For the past 20 years, his research has focused on the development of artificial
intelligence methods and other models for the analysis and predictions of environmental systems and coastal physical
processes. Projects have included the development and implementation of predictive models supporting navigation
and coastal management. Other studies have included the modeling and impact of relative sea level rise and storm
surge, the spatial variability of subsidence at the regional scale, tidal studies and local hydrodynamic models. His
team’s models have been used for over a decade for the prediction of cold stunning of sea turtles allowing to interrupt
navigation ahead of these events and other preparation by local stakeholders. Other work has included ML predictions
of thunderstorms and the development of ML algorithms to take advantage of 3D point clouds of marsh environments
and urban runoff water quality modeling. Dr. Tissot has authored or co-authored over 40 peer reviewed articles, 200
proceedings, abstracts and technical presentations, a Physical Science textbook for future K-12 teachers, and 2 US
Patents. Professor Tissot is a member and former chair of the American Meteorological Society Committee on Artificial
Intelligence Applications to Environmental Science.



