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Motivation 1: Largest uncertainties 1n
climate projections come from clouds

Effective Climate Sensitivity
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Source: Gentine et al. (Submitted), adapted from Meehl et al. (In Review)
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Cloud shortwave & longwave feedbacks are top contributors to spread

Source: Gentine et al. (Submitted), adapted from Meehl et al. (In Review), Zelinka et al. (2020)



Mottvation 2: 100-year Climate Simulations
unable to resolve low clouds before 2050
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Mottvation 2: 100-year Climate Simulations
unable to resolve low clouds before 2050
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Mottvation 2: 100-year Climate Simulations
unable to resolve low clouds before 2050

Inside each box:
Parametrization represents effects of Goal

fine-scale turbulence on coarse scale Source: Gentine et al, (Submitted)



Motivation 3: Data-driven parametrizations
accurately mimic subgrid-scale thermodynamics (offline)

Cloud-Resolving Model
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See: Beucler et al. (2019), Gentine et al. (2018)



Motivation 3: Accurately enough to correct
convective biases in climate models for ~10% CPU cost
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See: Rasp et al. (2018), Brenowitz et al. (2018,2019), O’ Gorman et al. (2018), Krasnopolsky et al. (2013)



Problem: First crude attempts show that
Machine-learning parametrizations...

1. Are hard to interpret and trust, impinging their operational use

E.g. Lead to unexpected instabilities when coupled to fluid dynamics

See: Brenowitz et al. (2020)
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Problem: First crude attempts show that
Machine-learning parametrizations...

1. Are hard to interpret and trust, impinging their operational use
2. Violate physical constraints (Conservation laws, Positive definition)

See: Beucler et al. (2019, 2020)
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Problem: First crude attempts show that
Machine-learning parametrizations...

Are hard to interpret and trust, impinging their operational use
Violate physical constraints (Conservation laws, Positive definition)
E.g. Generate spurious O(10W/m?) or negative precipitation
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Problem: First crude attempts show that
Machine-learning parametrizations...

1. Are hard to interpret and trust, impinging their operational use
2. Violate physical constraints (Conservation laws, Positive definition)
3. Make large errors when evaluated outside of training set

See: Beucler et al. (2020)



Problem: First crude attempts show that
Machine-learning parametrizations...

. Are hard to interpret and trust, impinging their operational use

2. Violate physical constraints (Conservation laws, Positive definition)

. Make large errors when evaluated outside of training set
E.g. Double convective heating if evaluated in warmer climate (+4K)

See: Beucler et al. (2020)



1
Interpretability
Stability

Given Data-driven Parametrization,
How to make it Interpretable
& Physically Consistent?

Here shown for

2 subgrid parametrization convection 3

Physical but broadly applicable to
Constraints data-driven models

Generalization

of physical processes



Given Data-driven Parametrization,
How to make it Interpretable
& Physically Consistent?



1) Global Cloud-Resolving Model (UW)

See: Brenowitz et al. (2018, 2019, 2020), Movie source: Noah Brenowity







1) Global Cloud-Resolving Model (UW)

Challenge: No clear “truth”/ “target” — Requires coarse-graining data

See: Brenowitz et al. (2018), Slide source: Noah Brenowitz



1) Global Cloud-Resolving Model (UW)

Challenge: No clear “truth”/ “target” — Requires coarse-graining data
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Challenge 2: No objective method to coarse-grain

See: Brenowitz et al. (2018), Slide source: Noah Brenowitz



1) Global Cloud-Resolving Model (UW)

Challenge: No clear “truth”/ “target” — Requires coarse-graining data
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Challenge 2: No objective method to coarse-grain
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See: Brenowitz et al. (2018), Yuval et al. (2020), Stide source: Noah Brenowitz,




2) “Truth”: Super-Parametrized CAM

Exterior Model: Interior Model:
Does not resolve convection Resolves response convection

At = 30m, Ax = 2° | At = 20s, Ax = 4km

Climate (1) | : Climate (t + At)

!

Large — scale
tendencies (1)

Image source: e3sm.org, Model source: Khairoutdinov et al. (2004)




2) “Target”: Emulate Super-Parametrization

Neural Network:

Large — scale Subgrid — scale
tendencies (1) tendencies (1)

Setup : SPCAM3 1n aqua-planet configuration with fixed SST
See: Collins et al. (2006) Khairoutdinov et al. (2005), Rasp et al. (2018)



Neural Network maps large-scale climate to
how convection vert. redistributes energy

Specific humidity Fully connected network Spec. hum. tend.
(kg/kg, 30 lev) # layers & nodes decided via (kg/kg/s, 30 lev)
e.g. tormal hyperparameter tuning
Temperature Loss = Mass-weight. MSE (W / m2> Temperature tend.
(K, 30 lev) (K/s, 30 lev)

Adam optimizer

7 layers ot 128 — ~100k param.
Trained for 15-20 epochs
Train. = yr1 (42,369,024 samples)
Valid. = yr2 (42,369,024 samples)

Net SW t (W/m2)

Surf. Pressure (Pa)
Net SW b (W/m?2)

Sol. Insol. (W/m?2)

Net LW t (W/m2)

SHF (W/m2)
Net LW b (W/m?2)

LHF (W/m2)

See: SHERPA (Github), Hertel et al. (2018), Gentine et al. (2018), Rasp et al. (2018), Beucler et al. (2019)



Given Data-driven Parametrization,
How to make it Interpretable
& Physically Consistent?
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Interpretability
Stability

Given Data-driven Parametrization,
How to make it Interpretable
& Physically Consistent?



Problem: For climate modeling, we need
interpretable parametrizations

Why did you predict
42 for this data point?

’.—__——-—___-

Source: Interpretable Machine 1 earning, C. Molnar (2019)



Q Tailor NN interpretability techniques Q

to parametrization task

See: McGovern et al. (2019), Toms et al. (2019), Montavon et al. (2018), Molnar et al. (2018)



Tailor NN interpretability techniques
to parametrization task

1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”

Neural-network = Non-linear Mapping: €T IEI Y = f (33)

Isolate inputs of interest:

T
T = |ZpDP TOther

Partial dependence fx: TLPDP 1D {f [SBPDP $Other} t CBPDP}

Estimated by averaging over chunks of data with similar inp. of interest

See: Molnar et al. (2018), Friedman (2001)



1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”

Image source: NOAA Photo library (fly00890)




1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”

Input 1:
Mid-tropospheric
Moisture (QM)

Image source: NOAA Photo library (fh00890), See: Bretherton et al. (2004), Rushley et al. (2018)




1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs

2

Input 1:
Mid-tropospheric
Moisture (QM)

Input 2:
Lower-tropospheric

Stability (I'TS)

Image source: NOAA Photo library (fly00890), See: Wood and Bretherton (2006)




1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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See: Brenowitz et al. (2020)
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”

Fixed QM = 33.7kg/m* LTS = 9.9K
0_

BN
(@») o
e

Pressure [hPa]
(@)
(@)
o

800

1000
—-40 —-20 0 0 50 100

Subgrid Moistening [W m™]  Subgrid Heating [W m™]

See: Brenowitz et al. (2020)



1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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1) Partial Dependence Plot
“Shows the marginal effect of 1 or 2 inputs on the predicted outputs”
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| - Tailor NN interpretability techniques |

to parametrization task

2) Saliency Map
Gradient of the NN
Calculate the NN’s Jacobian via automatic differentiation:

def [ 0Output
J i
OInput Inpute

Input image Gradients across RGB channels Max gradients Overlay

Image source: flashtorch (Github) See: Paszke et al. (2017), Springenbert et al. (2015)




Jacobian = Linear Response Function

dOutput d (Convective Moistening)
- = 1/day
JInput 0 (Moisture)
101
200
100°
S 400 >
B J 0 XS
= 600 S
100
800 D B 10
750 500 250 -101

p (mb)

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)



Jacobian = Linear Response Function

dOutput 0 (Convective Moistening) 1 /day]
— B a
Olnput 0 (Moisture) y
101
LLocal anomalies
are removed 109
-
(G
| And redistributed in 0 °
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See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)



Jacobian = Linear Response Function

Unstable
Stable NN NN o1
200
100
S 400 1 >
E A 0
o 600 —
0
800 m | 1l —10
750 500 250 750 500 250 —-10?

p (Mmb) p (mb)

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)



Coupling Linear Response Function to
Gravity Waves gives Stability Diagram offline

Stable NN ~ Unstable NN
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© 0 c
E —10-1 =
G >
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propagating

modes

See: Kuang (2018), Brenowitz, et al. (2020)



Stability diagram helped stabilize NNs offline

“Regularize” Inputs
Super by gddmg
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Both stabilized NN ran without crashing for
Imonth+ when coupled to climate models

“Regularize” Inputs
Super by gddmg.
Parametrized (Gaussian noise
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1
Interpretability
Stability

We can make data-driven parametrizations interpretable by
tailoring existing interpretability tools to parametrization
BUT Generate sputious O(10W/m?) or negative precipitation

See: Brenowitz et al. (2020)
"Interpreting and Stabilizing Machine-
learning Parametrizations of
Convection.”

arXw:2003.06549



We can make data-driven parametrizations interpretable by
tailoring existing interpretability tools to parametrization
BUT Generate sputious O(10W/m?) or negative precipitation

2

Physical

Constraints




Adapting NN’s Architecture/Loss Fx

Context: Conservation of mass, energy and radiation
First step = Add all terms of conservation laws to NN’s inputs/outputs

Loss: Introduce a penalty for violating conservation (~Lagrange mult.):

Loss = a (Squared residual from conservation laws)4(1 — o) (Mean squared error)

Architecture: Constraints lay. to enforce cons. laws to machine precision

Inputs Direct Outputs
L1 Standard Y1
— NN ;
Ly | (Optimizable) Y




Loss: Trade-off between performance and physical constraints

/ \

Loss = (1 — n)l(l-lean squared ermr}i—n [Squared residual from conservation laws)




® < Mean-Squared Error (skill)

1021 for unconstrained network

o |
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Loss: Trade-off between performance and physical constraints

Loss = (1 — {'I)I(Mean squared ermr}i—u [Squared residual from conservation laws)
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Loss: Trade-off between performance and physical constraints

Loss = (1 — {'I)I(Mean squared ermr}i—u [Squared residual from conservation laws)




Squared-Residual (energy/mass leak)
from conservation laws

o |
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Conservation weight o

Loss: Trade-off between performance and physical constraints

Loss = (1 — n)l(l-lean squared ermr}i—n [Squared residual from conservation laws)




Follows conservation laws

more and more closely
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Loss: Trade-off between performance and physical constraints

Loss = (1 — n)l(l-lean squared ermr}i—n [Squared residual from conservation laws)




Performs worse and worse
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Loss: Trade-off between performance and physical constraints

Loss = (1 — {'I)I(Mean squared ermr}i—u [Squared residual from conservation laws)
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Loss: Trade-off between performance and physical constraints

Architecture: Constraints enforced & competitive performance
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Loss: Trade-off between performance and physical constraints

Architecture: Nonlinear Constraints enforced & competitive perf.
& Biases mitigated via loss function
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Problem: Even when physically constrained,
NNs fail to generalize



Problem: Even when physically constrained,
NNs fail to generalize

Daily-mean Tropical prediction in reference climate

— 111D
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Convective moistenine (W m—2)
See: Beucler et al. (2019)



Problem: Even when physically constrained,
NNs fail to generalize

Daily-mean Tropical prediction in reference climate

U m— Trth
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I::I:_:"

500

—/
1000

—10 i 0 5 10 15
Convective moistenine (W m—2)

See: Beucler et al. (2019)



Problem: Even when physically constrained,
NNs fail to generalize

Daily-mean Tropical prediction in (+4K) warming experiment

U m— | 1constrained
200) e | ngs-constrainedd
E m— A retecture-constrained
= 400 me [ T1tD
7600
a3
=00
1000 -
—4() —2() () 2() 40 Gl ()

1 * * * T _':l
Convective molstening (W m— -1

See: Beucler et al. (2019)



We can enforce physical constraints in NN parametrizations of
convection by changing the architecture (strict) or the loss fx (soft)
BUT Make large error when evaluated outside of training conditions

See: Beucler et al. (2019)

2 "Enforcing Analytic Constraints in
Physical Neural-Networks Emulating Physical

Constraints Systems."
arXw:1909.00912




We can enforce physical constraints in NN parametrizations of
convection by changing the architecture (strict) or the loss fx (soft)
BUT Make large error when evaluated outside of training conditions

3

Generalization




Generalization Experiment:
Q Idea = Break the model Q

Image: I'T Biz Advisor



Generalization Experiment:
Uniform +8K warming

Training and Validation Test
on cold aquaplanet simulation on warm aquaplanet simulation
(Cold, -4K) (Warm, +4K)

Images: Rashevskyi 1 iacheslay, Sebastien Decoret
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Generalization Experiment:
Uniform +8K warming
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Generalization Experiment:
Uniform +8K warming

Tested out-of-sample

— (Cold
= Warm (+8K)

Trained on cold climate




Physically rescale the data

to convert extrapolation into interpolation

Goal: Uncover climate-invariant mapping from climate to convection
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Brute Force: Not Climate-Invariant




Physically rescale the data

to convert extrapolation into interpolation

Goal: Uncover climate-invariant mapping from climate to convection
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Goal: Climate-Invariant

Steps:

Data analysis to find climate-invariant mapping
2. Train NN on physically-rescaled data

1.



Algorithms: Custom Data Generators
& Custom lLayers

Inputs Converted Inputs
_qvpl ) _@1 )
Gv,2 Conversion D,
: »| Layer N
SHF Qv — Qo SHF
| LHF | LHF

* Only one training/validation/test data despite multiple rescalings
* Build NNs using different physical rescalings (trial & error)

* Keep the rescalings that yield the best generalization



NS Specific humidity (g/kg)

Clausius Clapeyron implies exponential
scaling of moisture with temperature
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Pressure (hPa)

Problem: NN fail to generalize to unseen
climates

Daily-mean Tropical prediction in cold climate
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Daily-mean Tropical prediction in cold climate
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Pressure (hPa)

Problem: NN fail to generalize to unseen
climates

Daily-mean Tropical prediction in warm climate
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Pressure (hPa)

Problem: NN fail to generalize to unseen
climates

Daily-mean Tropical prediction in warm climate
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Specific humidity (z) = Relative humidity (z)

Extrapolation

log10 (Histogram)
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Speciﬁgl;{lmidity (z) = Relative humidity (z) =

Pressure (hPa)
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Generalization improves dramatically!
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Temperature out-of-sample in lower atmosphere
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Pressure (hPa)

Can we similarly normalize Temperature?
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Temperature =
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Temperature =
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Temperature =

BUT
Problem with the sign of heating
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Latent Heat Flux

Latent Heat Flux =
* = [Saturation specific humidity (7, ps)

Extrapolation Interpolation
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Latent heat flux (W m™?) LHF scaled by near-surface saturation (W kg=!)



Latent

Latent Heat Flux

Heat Flux =
* = [Saturation specific humidity (7, ps)

Sign of convective heating mostly corrected!
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Latent Heat Flux =

Latent Heat Flux
Saturation specific humidity (7%, ps)

BUT

NN does not capture upwards shift with warming
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—— (Surface Pressure) — Pressure
Pressure =

(Surface Pressure) — (Tropopause Pressure)

Sign of improvements in lower atmosphere
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We can make data-driven parametrizations climate-invariant by
rescaling the data so as to transform an extrapolation into interpolation

See: Beucler et al. (2020)
"Towards Physically-consistent, Data- 3

driven Models of Convection." Generalization
arXiv:2002.08525
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Given Data-driven Parametrization,
How to make it Interpretable
& Physically Consistent?
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. Generalization
Constraints
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Interpretability
Stability

We can make data-driven parametrizations:

1) Interpretable: Tailor existing interpretability tools to parametrization
2) Physically-constrained: Adapt NN’s architecture or loss function
3) Climate-invariant: Phys. rescale data (extrapolation)— (interpolation)

2 1) Brenowitz et al. (2020, 2003.06549)
Physical 2) Beucler et al. (2019, 1909.00912) G loati
Constraints 4§ 3) Beucler et al. (2020, 2002.08525) '\~ cheraiization

3




‘ﬁ Outlook

* Rescaled vertical coordinate makes NN applicable across mdes
* Encouraging generalization results in real geography — observations
* Same NN working for dif. simul. — Test bed for transfer learning

* Stay tuned for coupled simulations with new NNs!
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