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Motivation 1: Largest uncertainties in 
climate projections come from clouds

Eq. Temperature Response 
to CO2 doubling

Source: Gentine et al. (Submitted), adapted from Meehl et al. (In Review) 



Motivation 1: Largest uncertainties in 
climate projections come from clouds

Eq. Temperature Response 
to CO2 doubling

Source: Gentine et al. (Submitted), adapted from Meehl et al. (In Review), Zelinka et al. (2020) 

Cloud shortwave & longwave feedbacks are top contributors to spread



Motivation 2: 100-year Climate Simulations 
unable to resolve low clouds before 2050

Source: Schneider et al., 2017

High 
Clouds

1km



Motivation 2: 100-year Climate Simulations 
unable to resolve low clouds before 2050

Source: Schneider et al., 2017

High 
Clouds

1km

100m

Low Clouds 
(2050?)



Source: Gentine et al. (Submitted)

Motivation 2: 100-year Climate Simulations 
unable to resolve low clouds before 2050

Inside each box:
Parametrization represents effects of  
fine-scale turbulence on coarse scale



Motivation 3: Data-driven parametrizations 
accurately mimic subgrid-scale thermodynamics (offline)

See: Beucler et al. (2019), Gentine et al. (2018)



Motivation 3: Accurately enough to correct 
convective biases in climate models for ~10% CPU cost

See: Rasp et al. (2018), Brenowitz et al. (2018,2019), O’Gorman et al. (2018), Krasnopolsky et al. (2013)



Problem: First crude attempts show that  
Machine-learning parametrizations…

1. Are hard to interpret and trust, impinging their operational use

See: Brenowitz et al. (2020)

E.g. Lead to unexpected instabilities when coupled to fluid dynamics
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Problem: First crude attempts show that  
Machine-learning parametrizations…

1. Are hard to interpret and trust, impinging their operational use
2. Violate physical constraints (Conservation laws, Positive definition)
3. Make large errors when evaluated outside of  training set

E.g. Double convective heating if  evaluated in warmer climate (+4K)

See: Beucler et al. (2020)
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Given Data-driven Parametrization, 
How to make it Interpretable

& Physically Consistent?

Here shown for 
subgrid parametrization convection 

but broadly applicable to 
data-driven models 

of  physical processes 
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1) Global Cloud-Resolving Model (UW)

See: Brenowitz et al. (2018, 2019, 2020), Movie source: Noah Brenowitz
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1) Global Cloud-Resolving Model (UW)

See: Brenowitz et al. (2018), Yuval et al. (2020), Slide source: Noah Brenowitz

Challenge: No clear “truth”/ “target” → Requires coarse-graining data

×40      (160km)

Challenge 2: No objective method to coarse-grain



2) “Truth”: Super-Parametrized CAM

Image source: e3sm.org, Model source: Khairoutdinov et al. (2004)

Exterior Model: 
Does not resolve convection
Δt = 30m, Δx = 2°

Interior Model: 
Resolves response convection

Δt = 20s, Δx = 4km



Setup : SPCAM3 in aqua-planet configuration with fixed SST
See: Collins et al. (2006) Khairoutdinov et al. (2005), Rasp et al. (2018) 

Neural Network: 
100 times faster

2) “Target”: Emulate Super-Parametrization



Neural Network maps large-scale climate to 
how convection vert. redistributes energy

Fully connected network
# layers & nodes decided via 

e.g. formal hyperparameter tuning
Loss = Mass-weight. MSE (W/m2)

Adam optimizer
7 layers of  128 → ~100k param.

Trained for 15-20 epochs
Train. = yr1 (42,369,024 samples)
Valid. = yr2 (42,369,024 samples)

Specific humidity 
(kg/kg, 30 lev)

Temperature 
(K, 30 lev)

Surf. Pressure (Pa)
Sol. Insol. (W/m2)

SHF (W/m2)
LHF (W/m2)

Spec. hum. tend. 
(kg/kg/s, 30 lev)

Temperature tend. 
(K/s, 30 lev)

Net SW t (W/m2)
Net SW b (W/m2)
Net LW t (W/m2)
Net LW b (W/m2)

See: SHERPA (Github), Hertel et al. (2018), Gentine et al. (2018), Rasp et al. (2018), Beucler et al. (2019) 
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Problem: For climate modeling, we need
interpretable parametrizations

Source: Interpretable Machine Learning, C. Molnar (2019)



Tailor NN interpretability techniques
to parametrization task

See: McGovern et al. (2019), Toms et al. (2019), Montavon et al. (2018), Molnar et al. (2018)



See: Molnar et al. (2018), Friedman (2001)

1) Partial Dependence Plot
“Shows the marginal effect of  1 or 2 inputs on the predicted outputs”

Neural-network = Non-linear Mapping:

Isolate inputs of  interest:

Partial dependence fx:

Estimated by averaging over chunks of  data with similar inp. of  interest

Tailor NN interpretability techniques
to parametrization task



Image source: NOAA Photo library (fly00890)
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Image source: NOAA Photo library (fly00890), See: Bretherton et al. (2004), Rushley et al. (2018) 

1) Partial Dependence Plot
“Shows the marginal effect of  1 or 2 inputs on the predicted outputs”

Input 1:
Mid-tropospheric 
Moisture (QM)



Image source: NOAA Photo library (fly00890), See: Wood and Bretherton (2006) 

1) Partial Dependence Plot
“Shows the marginal effect of  1 or 2 inputs on the predicted outputs”

Input 1:
Mid-tropospheric 
Moisture (QM)

Input 2:
Lower-tropospheric 
Stability (LTS)
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1) Partial Dependence Plot
“Shows the marginal effect of  1 or 2 inputs on the predicted outputs”



2) Saliency Map
Gradient of  the NN

Calculate the NN’s Jacobian via automatic differentiation: 

Tailor NN interpretability techniques
to parametrization task

Image source: flashtorch (Github) See: Paszke et al. (2017), Springenbert et al. (2015)



Jacobian = Linear Response Function

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)



Jacobian = Linear Response Function

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)

P (Moisture Perturb.)

P
(Moist. 
Resp.)

Local anomalies 
are removed

And redistributed in 
lower atmosphere



Jacobian = Linear Response Function

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018)

Stable NN
Unstable 

NN



Coupling Linear Response Function to 
Gravity Waves gives Stability Diagram offline

See: Kuang (2018), Brenowitz et al. (2020)

Stable NN Unstable NN

Spurious 
unstable 

propagating 
modes



Stability diagram helped stabilize NNs offline

Super
Parametrized

Global
Cloud-Resolv.

“Regularize” Inputs
by adding 

Gaussian noise

Remove
upper-atmos.

Inputs



Both stabilized NN ran without crashing for 
1month+ when coupled to climate models 

Super
Parametrized

Global
Cloud-Resolv.

“Regularize” Inputs
by adding 

Gaussian noise

Remove
upper-atmos.

Inputs
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We can make data-driven parametrizations interpretable by
tailoring existing interpretability tools to parametrization

BUT Generate spurious O(10W/m2) or negative precipitation

See: Brenowitz et al. (2020)
"Interpreting and Stabilizing Machine-

learning Parametrizations of  
Convection." 

arXiv:2003.06549  
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Adapting NN’s Architecture/Loss Fx
Context: Conservation of  mass, energy and radiation
First step = Add all terms of  conservation laws to NN’s inputs/outputs

Loss: Introduce a penalty for violating conservation (~Lagrange mult.):

Architecture: Constraints lay. to enforce cons. laws to machine precision



Loss: Trade-off  between performance and physical constraints



Loss: Trade-off  between performance and physical constraints

Mean-Squared Error (skill)
for unconstrained network

Good

Bad



Loss: Trade-off  between performance and physical constraints

Mean-Squared Error (skill)
for multiple linear regression

Good

Bad



Loss: Trade-off  between performance and physical constraints

Squared-Residual (energy/mass leak)
from conservation laws

>100



Loss: Trade-off  between performance and physical constraints

Follows conservation laws 
more and more closely



Loss: Trade-off  between performance and physical constraints

Performs worse and worse



Loss: Trade-off  between performance and physical constraints

Architecture: Constraints enforced & competitive performance



Loss: Trade-off  between performance and physical constraints

Architecture: Nonlinear Constraints enforced & competitive perf. 
& Biases mitigated via loss function



Problem: Even when physically constrained, 
NNs fail to generalize
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Problem: Even when physically constrained, 
NNs fail to generalize

See: Beucler et al. (2019)

Daily-mean Tropical prediction in (+4K) warming experiment 
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We can enforce physical constraints in NN parametrizations of  
convection by changing the architecture (strict) or the loss fx (soft)

BUT Make large error when evaluated outside of  training conditions

See: Beucler et al. (2019)
"Enforcing Analytic Constraints in 

Neural-Networks Emulating Physical 
Systems." 

arXiv:1909.00912  
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convection by changing the architecture (strict) or the loss fx (soft)

BUT Make large error when evaluated outside of  training conditions



Generalization Experiment: 
Idea = Break the model

Image: IT Biz Advisor



Generalization Experiment: 
Uniform +8K warming

Images: Rashevskyi Viacheslav, Sebastien Decoret

+8K

Training and Validation
on cold aquaplanet simulation 

(Cold, -4K)

Test
on warm aquaplanet simulation 

(Warm, +4K)



Generalization Experiment: 
Uniform +8K warming
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Generalization Experiment: 
Uniform +8K warming



Generalization Experiment: 
Uniform +8K warming

Trained on cold climate

Tested out-of-sample



Physically rescale the data 
to convert extrapolation into interpolation

Goal: Uncover climate-invariant mapping from climate to convection

Brute Force: Not Climate-Invariant



Goal: Uncover climate-invariant mapping from climate to convection

Goal: Climate-Invariant
Steps: 
1. Data analysis to find climate-invariant mapping
2. Train NN on physically-rescaled data 

Physically rescale the data 
to convert extrapolation into interpolation



Algorithms: Custom Data Generators 
& Custom Layers

• Only one training/validation/test data despite multiple rescalings

• Build NNs using different physical rescalings (trial & error)

• Keep the rescalings that yield the best generalization



Clausius Clapeyron implies exponential 
scaling of  moisture with temperature



Clausius Clapeyron implies exponential 
scaling of  moisture with temperature



Clausius Clapeyron implies exponential 
scaling of  moisture with temperature

Hard to 
extrapolate



Problem: NNs fail to generalize to unseen 
climates

Daily-mean Tropical prediction in cold climate 
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Problem: NNs fail to generalize to unseen 
climates

Daily-mean Tropical prediction in warm climate 



Problem: NNs fail to generalize to unseen 
climates

Daily-mean Tropical prediction in warm climate 



Extrapolation Interpolation



Generalization improves dramatically!



Temperature out-of-sample in lower atmosphere



Can we similarly normalize Temperature?



Extrapolation Interpolation



Generalization improved in lower atmosphere



BUT
Problem with the sign of  heating



Extrapolation Interpolation



Sign of  convective heating mostly corrected!



BUT
NN does not capture upwards shift with warming



Sign of  improvements in lower atmosphere
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We can make data-driven parametrizations climate-invariant by 
rescaling the data so as to transform an extrapolation into interpolation

See: Beucler et al. (2020)
"Towards Physically-consistent, Data-

driven Models of  Convection." 
arXiv:2002.08525 
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We can make data-driven parametrizations:

1) Interpretable: Tailor existing interpretability tools to parametrization
2) Physically-constrained: Adapt NN’s architecture or loss function

3) Climate-invariant: Phys. rescale data (extrapolation)→(interpolation)

1) Brenowitz et al. (2020, 2003.06549)
2) Beucler et al. (2019, 1909.00912)
3) Beucler et al. (2020, 2002.08525) 



Outlook

• Rescaled vertical coordinate makes NN applicable across models

• Encouraging generalization results in real geography → observations

• Same NN working for dif. simul. → Test bed for transfer learning

• Stay tuned for coupled simulations with new NNs!
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