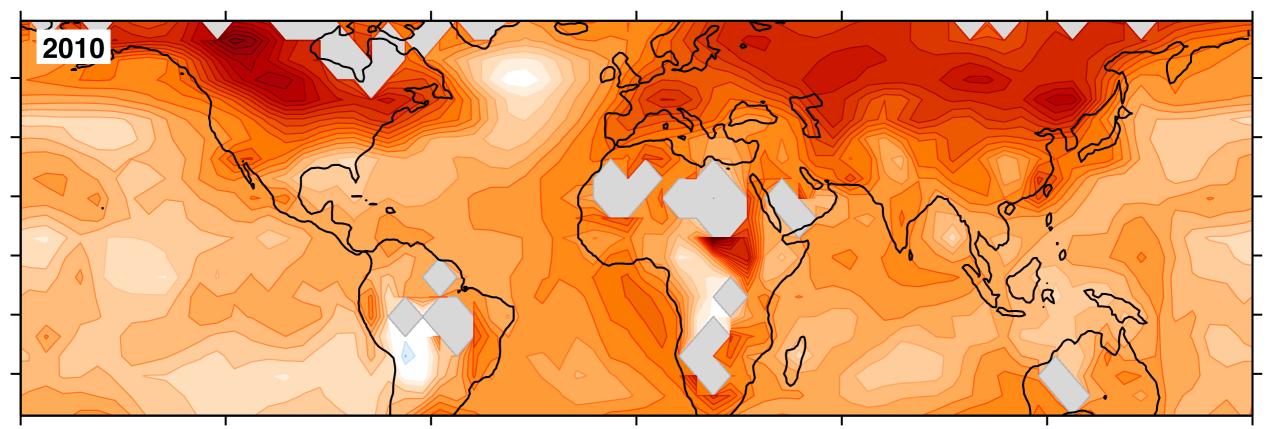


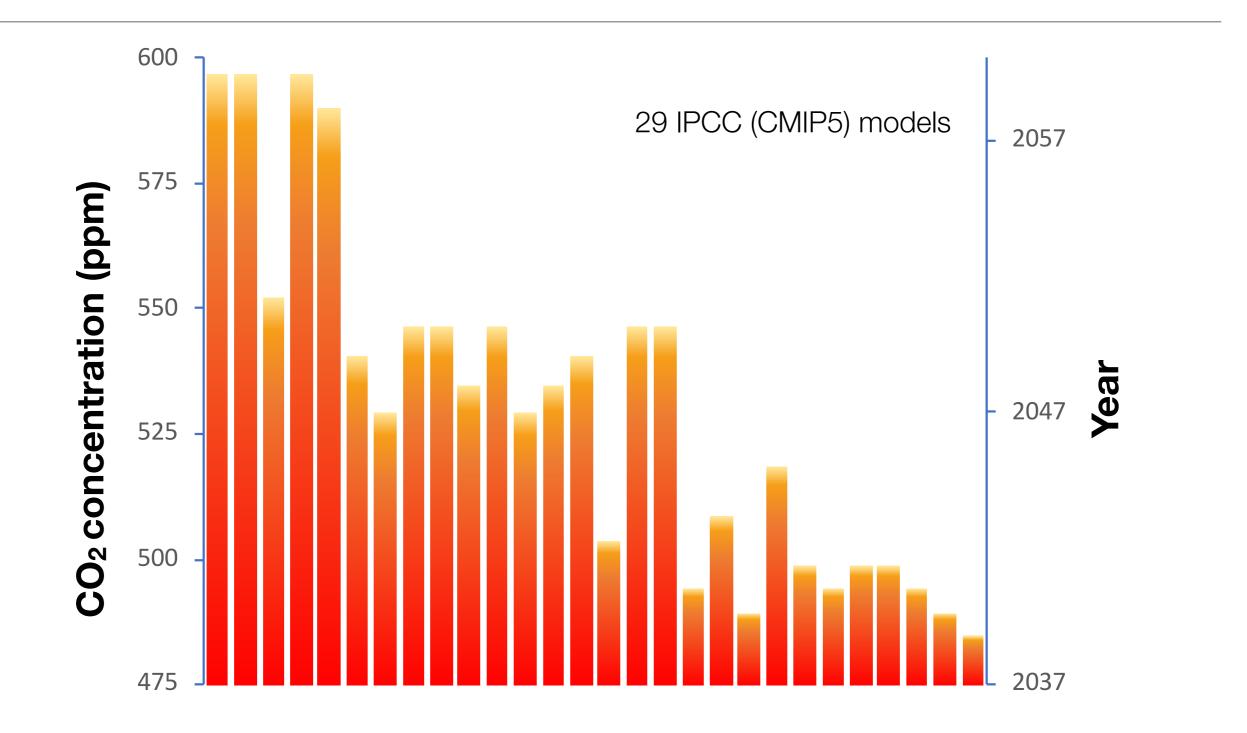
Earth System Modeling 2.0: Toward Data-Informed Climate Models With Quantified Uncertainties

Tapio Schneider, Yair Cohen, Anna Jaruga, Jia He, Ignacio Lopez-Gomez, Emmet Cleary, Alfredo Garbuno, Andrew Stuart

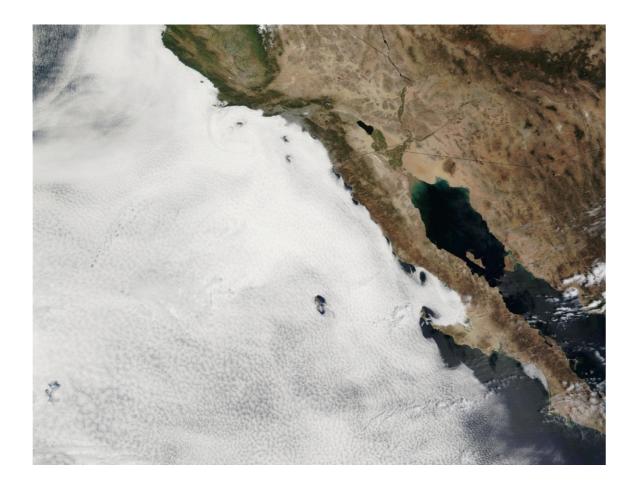


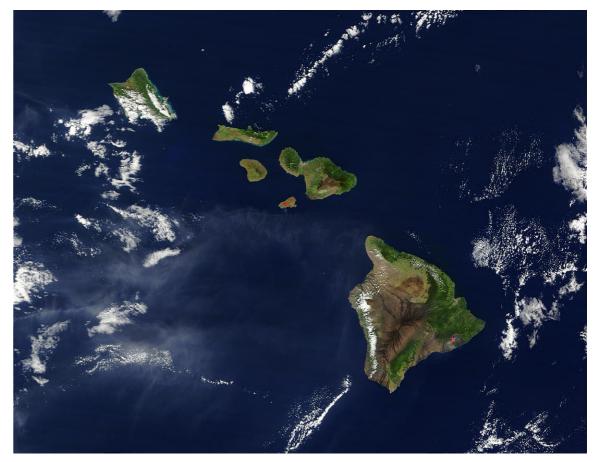
Temperature change (°C) fton 1850s through 2010s

But climate predictions remain uncertain: E.g., the CO₂ concentration at which 2°C warming threshold is crossed varies widely across models



The primary (but not only) source of uncertainties in climate predictions is the representation of low clouds in models





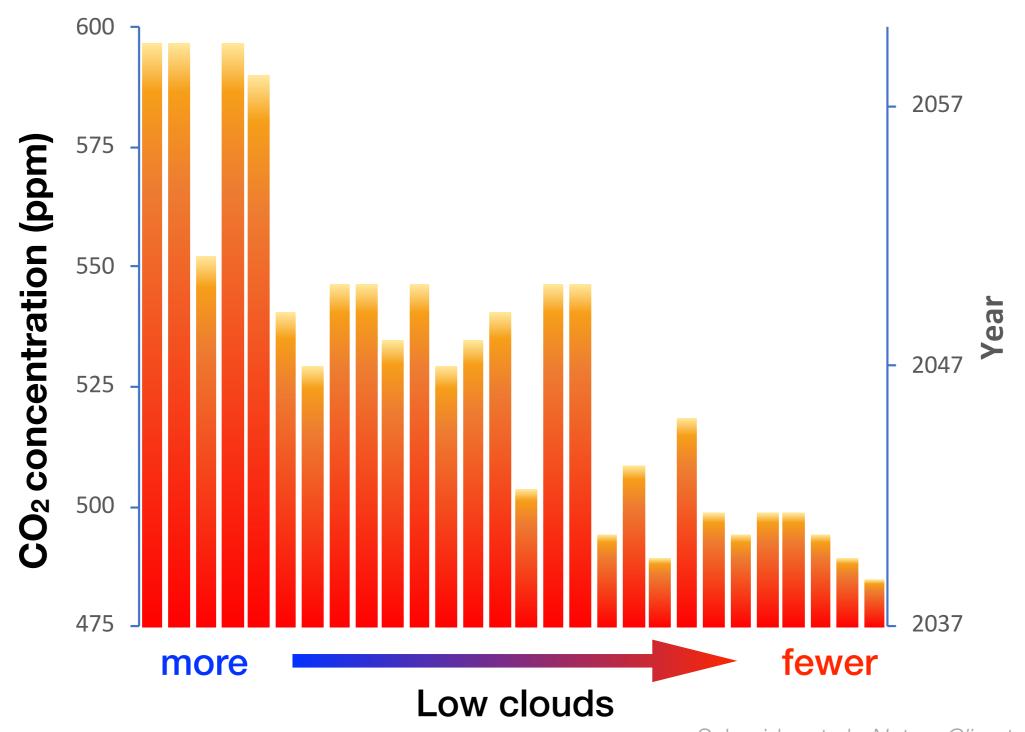
http://eoimages.gsfc.nasa.gov

Stratocumulus: colder

Cumulus: warmer

We don't know if we will get more low clouds (damped global warming), or fewer low clouds (amplified warming) with rising CO₂ levels

Spread in predictions for next ~30-50 years is dominated by uncertainties in low clouds; uncertainties are poorly quantified



More accurate climate projections with quantified uncertainties would enable...

- Data-driven decisions about infrastructure planning, e.g.,
 - How high a sea wall should New York City build to protect itself against storm surges in 2050?
 - What water management infrastructure is needed to ensure food and water security in sub-Saharan Africa?
- Rational resource allocation for climate change adaptation: costs estimated to reach >\$200B annually by 2050 (UNEP 2016)
- Realization of the socioeconomic value of more accurate predictions, which is estimated to lie in the trillions of USD (Hope 2015; CDP 2019)

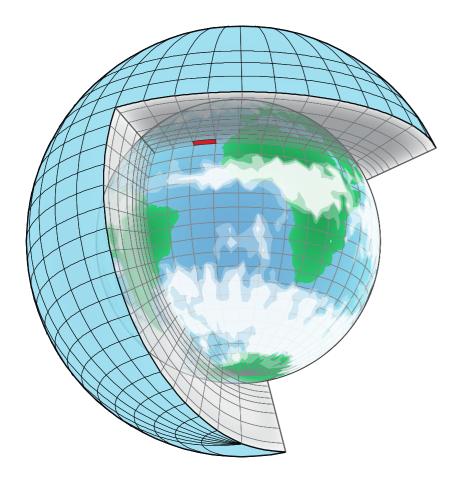
"The climate information needs of Federal, State, Local, and Private Sector decision makers are not being fully met." U.S. GAO (2015)

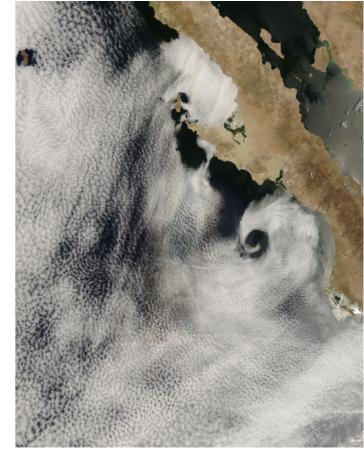
Clouds in climate predictions: Why are they difficult but important?

Clouds are difficult to simulate because they contain very little water

Cloud droplets: Water vapor: 25 mm 0.1 mm

The small-scale cloud-controlling processes cannot be computed globally in climate models





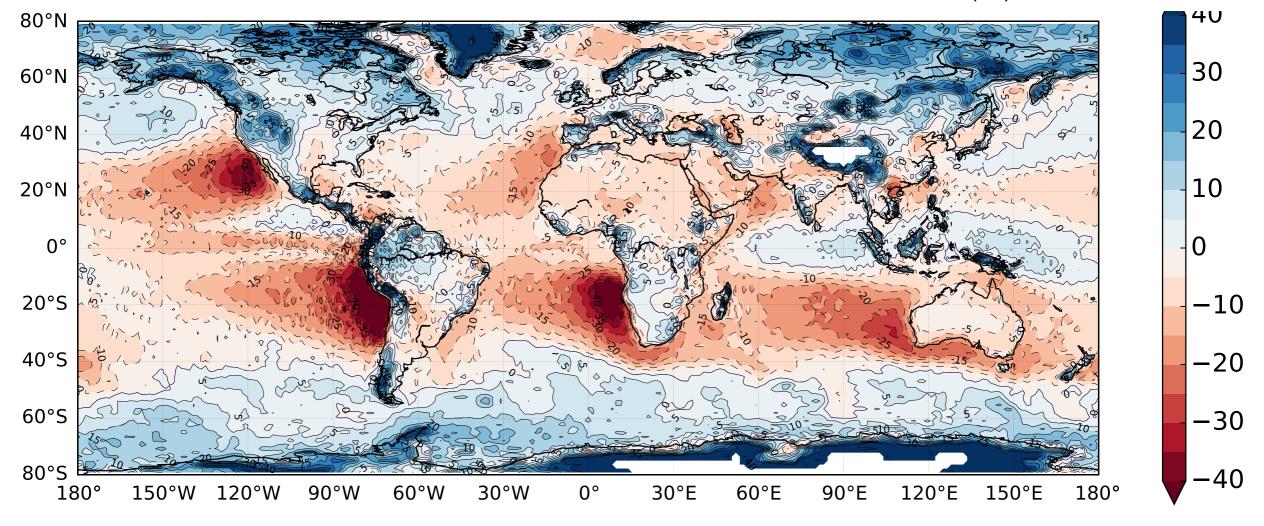
Global model: ~10-50 km resolution

Cloud scales: ~10-100 m

Subgrid-scale processes (e.g., clouds and turbulence) are represented in ad-hoc fashion (not data-driven)

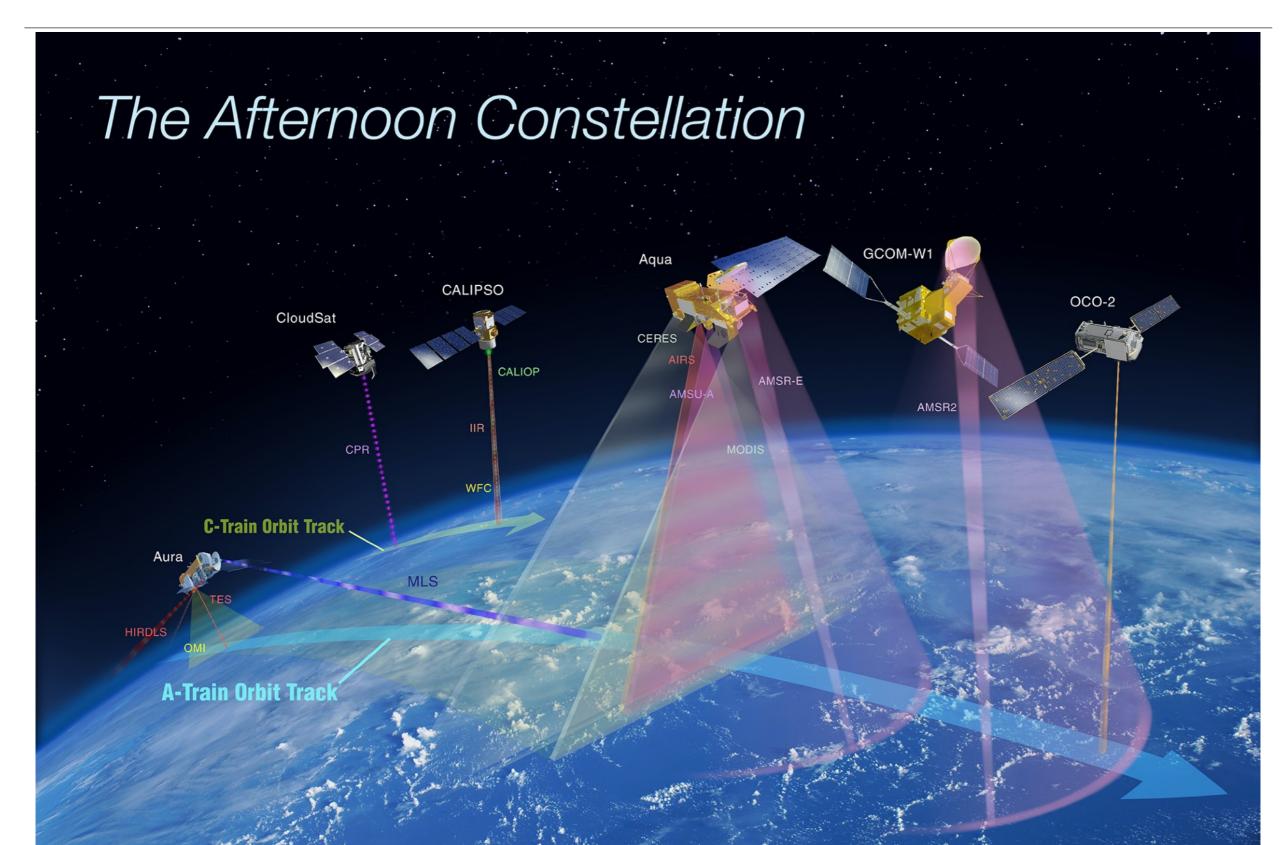
No climate model simulates low clouds well, leading to large energy flux biases (~50 W m⁻²)

CNRM-CM6 low-cloud bias relative to observations (%)

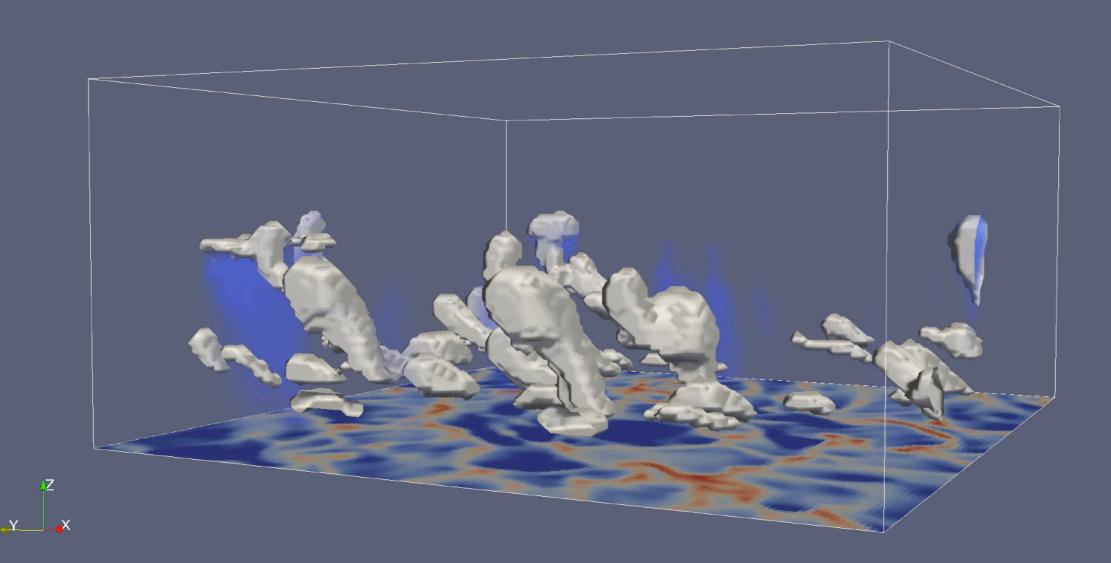


Improving predictions is urgent. How can we make progress?

We have a wealth of global climate data, whose potential to improve models has not been tapped



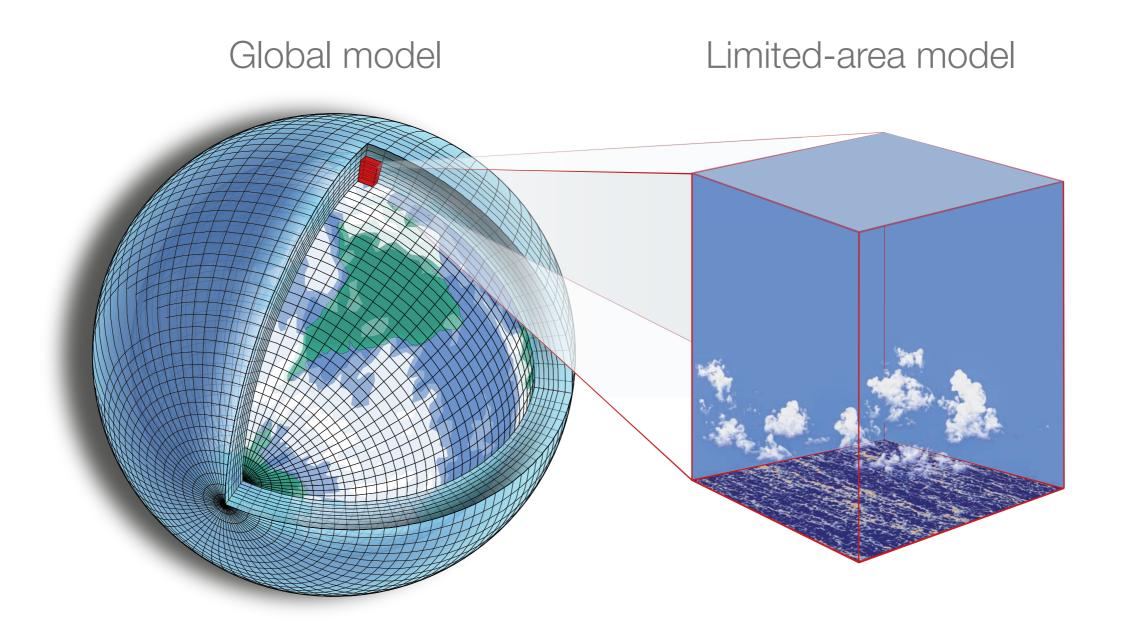
We can also simulate some small-scale processes (e.g., clouds) faithfully, albeit only in limited areas



Large-eddy simulation of tropical cumulus

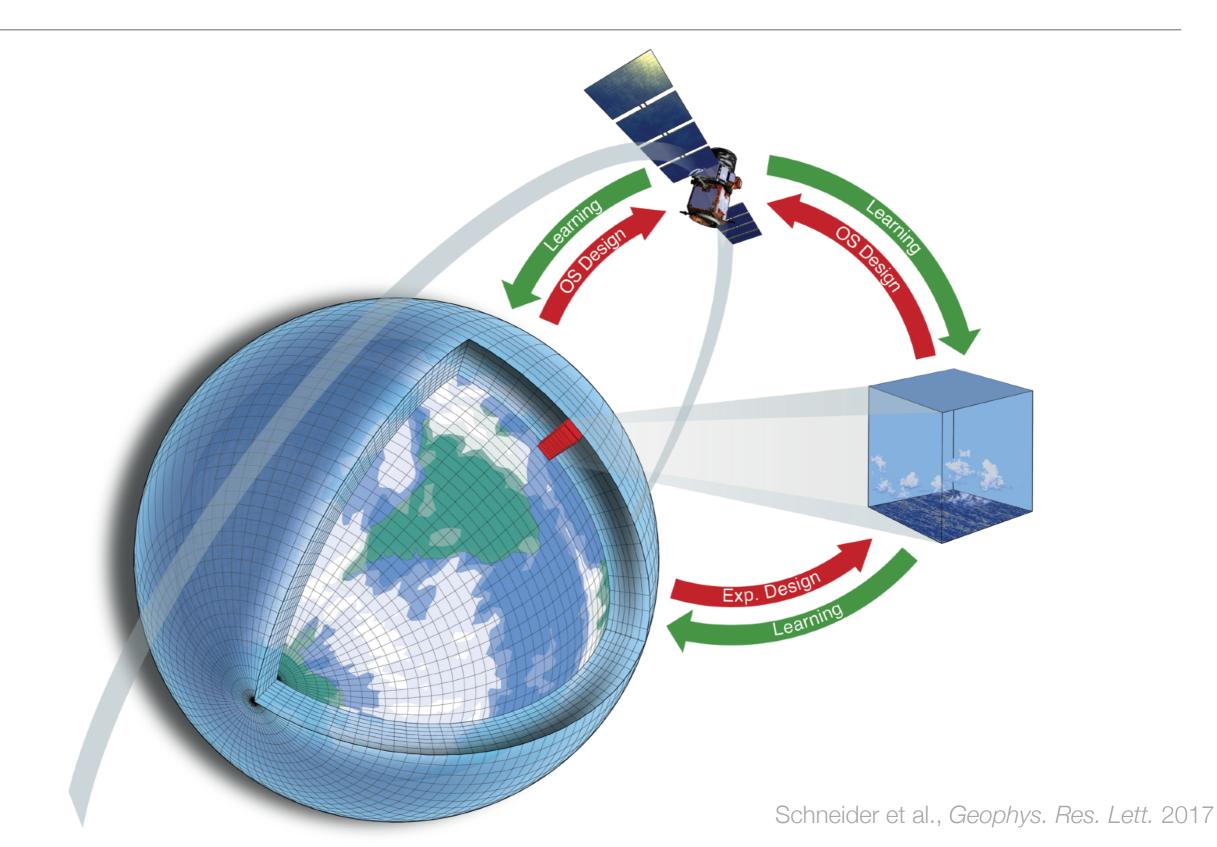
Simulation with PyCLES (Pressel et al. 2015)

Such limited area models can be nested in a global model and can, in turn, inform the global model



Thousands of high-resolution simulations can be embedded in global model in a distributed computing environment (cloud), and the global model can learn from them

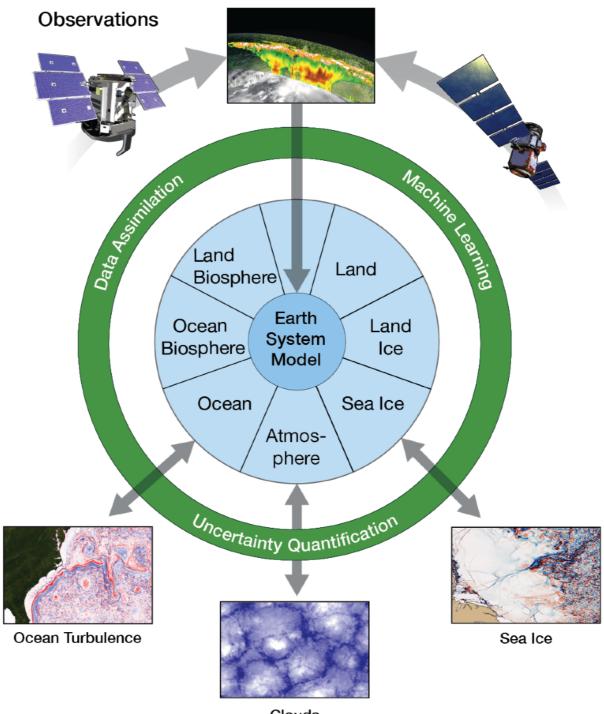
Vision: build a model that learns automatically both from observations and targeted high-resolution simulations



Out of these ideas was born CliMA (fall 2018)

About 50 Earth scientists, engineers, and applied mathematicians at 4 institutions:

CliMA is building an Earth system model that wraps a *joint* data assimilation/machine learning layer around all component models



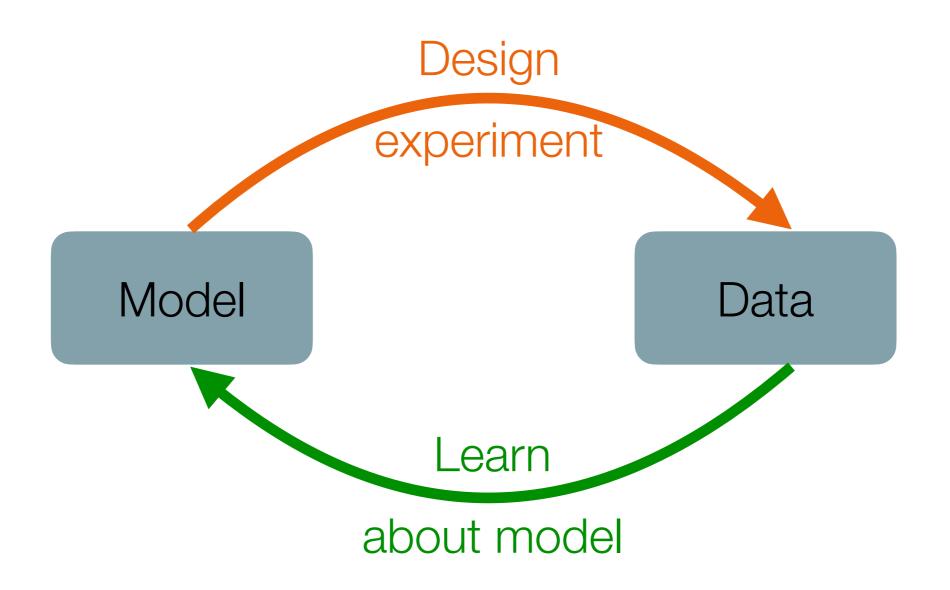
Clouds

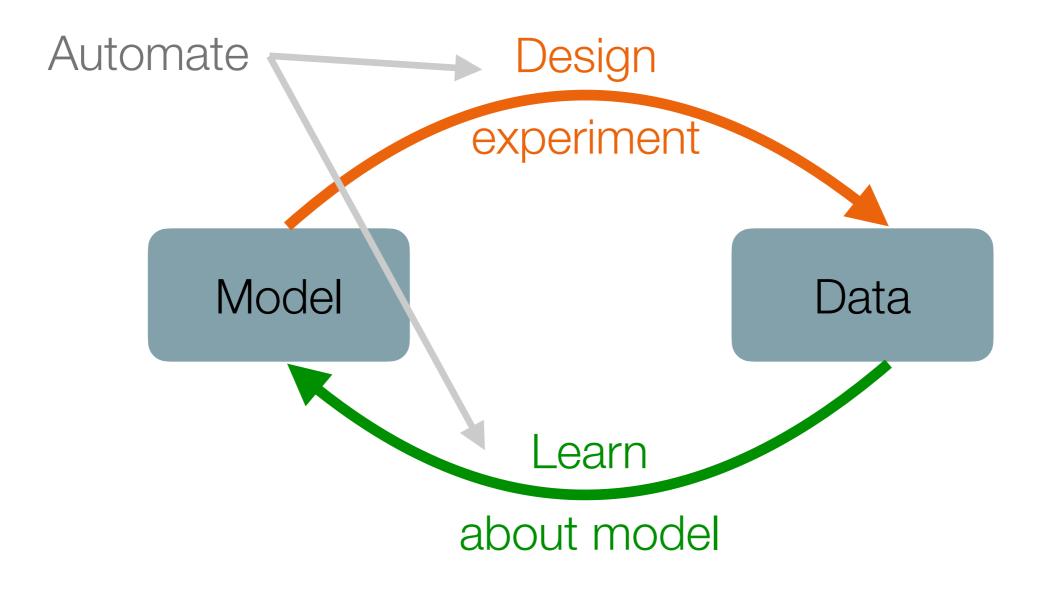
Targeted High-Resolution Simulations

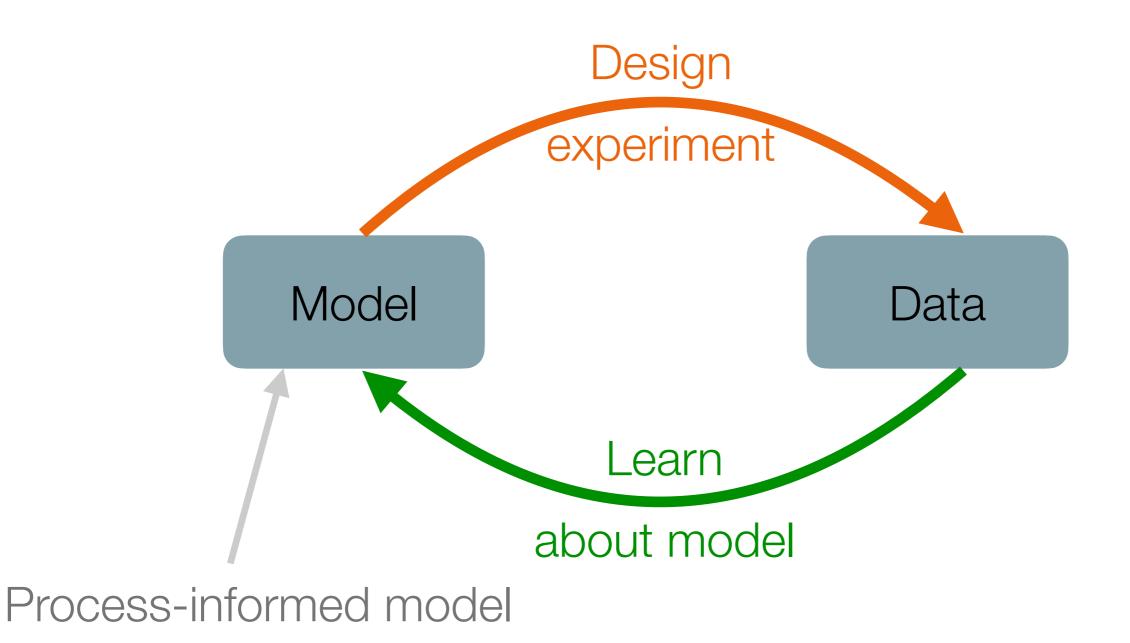
How does this actually work? "Soft AI"

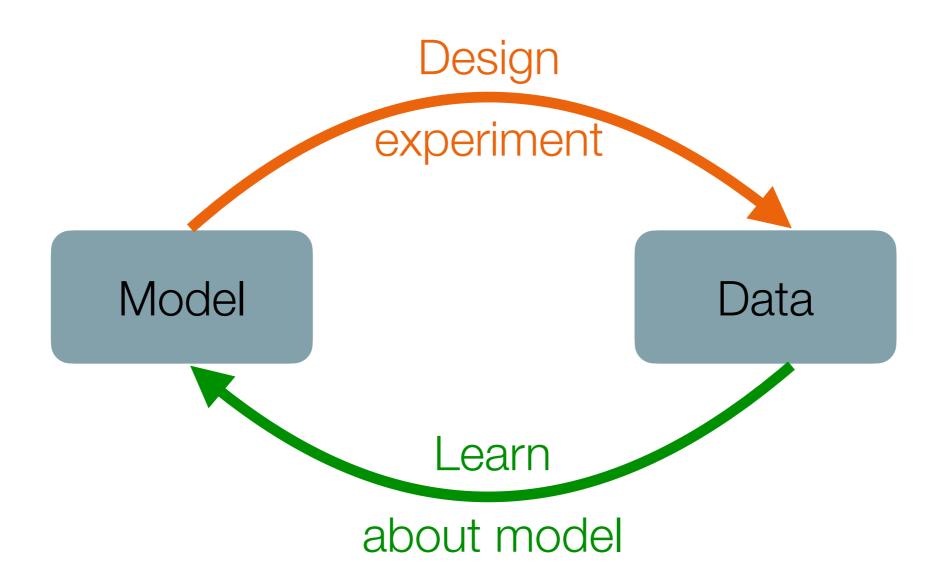
We want to use observations, yet need out-of-sample predictive capabilities and computational feasibility

- We need out-of-sample predictive capabilities (predict a climate we have not seen), yet want to use present-day observations
 - Use known equations of motion to the extent possible to minimize number of adjustable parameters and avoid overfitting
- Climate data often do not have high temporal resolution but do provide informative time aggregate statistics
 - Learn from **climate statistics** (in contrast to weather states in NWP)
- Running climate models is computationally extremely expensive
 - Need fast algorithms for learning about models from data (with judicious use of ML tools)









Qualitative progress from doing 10⁴ times more computational experiments and using >10⁶ times more observational degrees of freedom than before

An example: Reduced-order models for turbulence, convection, and clouds

Yair Cohen

Jia He

Anna Jaruga

Ignacio Lopez Gomez

Cloud/boundary layer turbulence schemes in current GCMs have unphysical discontinuities and many correlated parameters

- Deep convection: Often mass flux schemes (e.g., Arakawa & Schubert 1974, Tiedtke 1989; Arakawa & Wu 2013)
- Shallow convection: Often also mass flux schemes, but with discontinuously different parameters (e.g., entrainment rates)
- Boundary layer turbulence: Often diffusive; difficult to match with cloud layer (e.g., Troen & Mahrt 1986)

Parametric and structural discontinuities for processes with common (e.g., dry) limits; plethora of parameters

We use a unified, physics-based model, derived by coarse graining of equations of motion and adaptable in complexity to data availability

Decomposes domain into environment (i=0) and coherent plumes (i=1, ..., N):

• Continuity:
$$\frac{\partial(\rho a_i)}{\partial t} + \frac{\partial(\rho a_i \overline{w}_i)}{\partial z} + \nabla_h \cdot (\rho a_i \langle \mathbf{u}_h \rangle) = \underbrace{\rho a_i \overline{w}_i \left(\sum_j \epsilon_{ij} - \delta_i\right)}_{\text{Mass entrainment/detrainment}}$$

• Scalar mean:

$$\frac{\partial(\rho a_i \overline{\phi}_i)}{\partial t} + \frac{\partial(\rho a_i \overline{w}_i \overline{\phi}_i)}{\partial z} + \nabla_h \cdot \left(\rho a_i \langle \mathbf{u}_h \rangle \overline{\phi}_i\right) = \left(\underbrace{-\frac{\partial(\rho a_i \overline{w}_i' \phi_i')}{\partial z}}_{\text{Turbulent transport}} + \underbrace{\rho a_i \overline{w}_i \left(\sum_j \epsilon_{ij} \overline{\phi}_j - \delta_i \overline{\phi}_i\right)}_{\text{Entrainment/detrainment}} + \underbrace{\rho a_i \overline{S}_{\phi,i}}_{\text{Sources/sinks}} \right)$$

Scalar covariance

$$\frac{\partial(\rho a_i \overline{\phi'_i \psi'_i})}{\partial t} + \frac{\partial(\rho a_i \overline{w}_i \overline{\phi'_i \psi'_i})}{\partial z} + \nabla_h \cdot \left(\rho a_i \langle \mathbf{u}_h \rangle \overline{\phi'_i \psi'_i}\right) = \underbrace{-\rho a_i \overline{w'_i \psi'_i}}_{\partial z} \frac{\partial \overline{\phi}_i}{\partial z} - \rho a_i \overline{w'_i \phi'_i} \frac{\partial \overline{\psi}_i}{\partial z}$$

Generation/destruction by cross-gradient flux

$$+ \rho a_i \overline{w}_i \left[\sum_j \epsilon_{ij} (\overline{\phi'_j \psi'_j} + (\overline{\phi}_j - \overline{\phi}_i)(\overline{\psi}_j - \overline{\psi}_i)) - \delta_i \overline{\phi'_j \psi'_i} \right] - \underbrace{\frac{\partial (\rho a_i \overline{w'_i \phi'_j \psi'_i})}{\partial z}}_{\text{Turbulent transport}} + \underbrace{\rho a_i (\overline{S'_{\phi,i} \psi'_i} + \overline{S'_{\psi,i} \phi'_i})}_{\text{Sources/sinks}}.$$

Covariance entrainment/detrainment

(Tan et al., JAMES 2018)

We use a unified, physics-based model, derived by coarse graining of equations of motion and adaptable in complexity to data availability

Decomposes domain into environment (i=0) and coherent plumes (i=1, ..., N):

• Continuity:

$$\frac{\partial(\rho a_{i})}{\partial t} + \frac{\partial(\rho a_{i}\overline{w}_{i})}{\partial z} + \nabla_{h} \cdot (\rho a_{i}\langle \mathbf{u}_{h}\rangle) = \left(\begin{array}{c} \rho a_{i}\overline{w}_{i}\left(\sum_{j}\epsilon_{ij}-\delta_{i}\right) \\ \mu_{ass entrainment/detrainment} \\ \mu_{ass entrainment/detrainment/d$$

$$\frac{\partial(\rho a_i \overline{\phi'_i \psi'_i})}{\partial t} + \frac{\partial(\rho a_i \overline{w}_i \overline{\phi'_i \psi'_i})}{\partial z} + \nabla_h \cdot \left(\rho a_i \langle \mathbf{u}_h \rangle \overline{\phi'_i \psi'_i}\right) = \underbrace{-\rho a_i \overline{w'_i \psi'_i}}_{\partial z} \frac{\partial \overline{\phi}_i}{\partial z} - \rho a_i \overline{w'_i \phi'_i} \frac{\partial \overline{\psi}_i}{\partial z}$$

Generation/destruction by cross-gradient flux

$$+ \rho a_i \overline{w}_i \left[\sum_j \epsilon_{ij} (\overline{\phi'_j \psi'_j} + (\overline{\phi}_j - \overline{\phi}_i)(\overline{\psi}_j - \overline{\psi}_i)) - \delta_i \overline{\phi'_i \psi'_i} \right] - \underbrace{\frac{\partial (\rho a_i \overline{w'_i \phi'_i \psi'_i})}{\partial z}}_{\text{Turbulent transport}} + \underbrace{\rho a_i (\overline{S'_{\phi,i} \psi'_i} + \overline{S'_{\psi,i} \phi'_i})}_{\text{Sources/sinks}}.$$

Covariance entrainment/detrainment

(Tan et al., JAMES 2018)

Parametric functions requiring closure appear in the coarse-grained equations; can be refined with data

Entrainment and detrainment (exchange between subdomains): • Represented by a physical entrainment length ($|b|/w^2$) and an adjustable function of nondimensional parameters

- Nonhydrostatic pressure gradients ٠ Represented by a combination of buoyancy reduction (virtual mass) and pressure drag
- Eddy diffusion/mixing length • Mixing length as soft minimum of all possible balances between production and dissipation of TKE

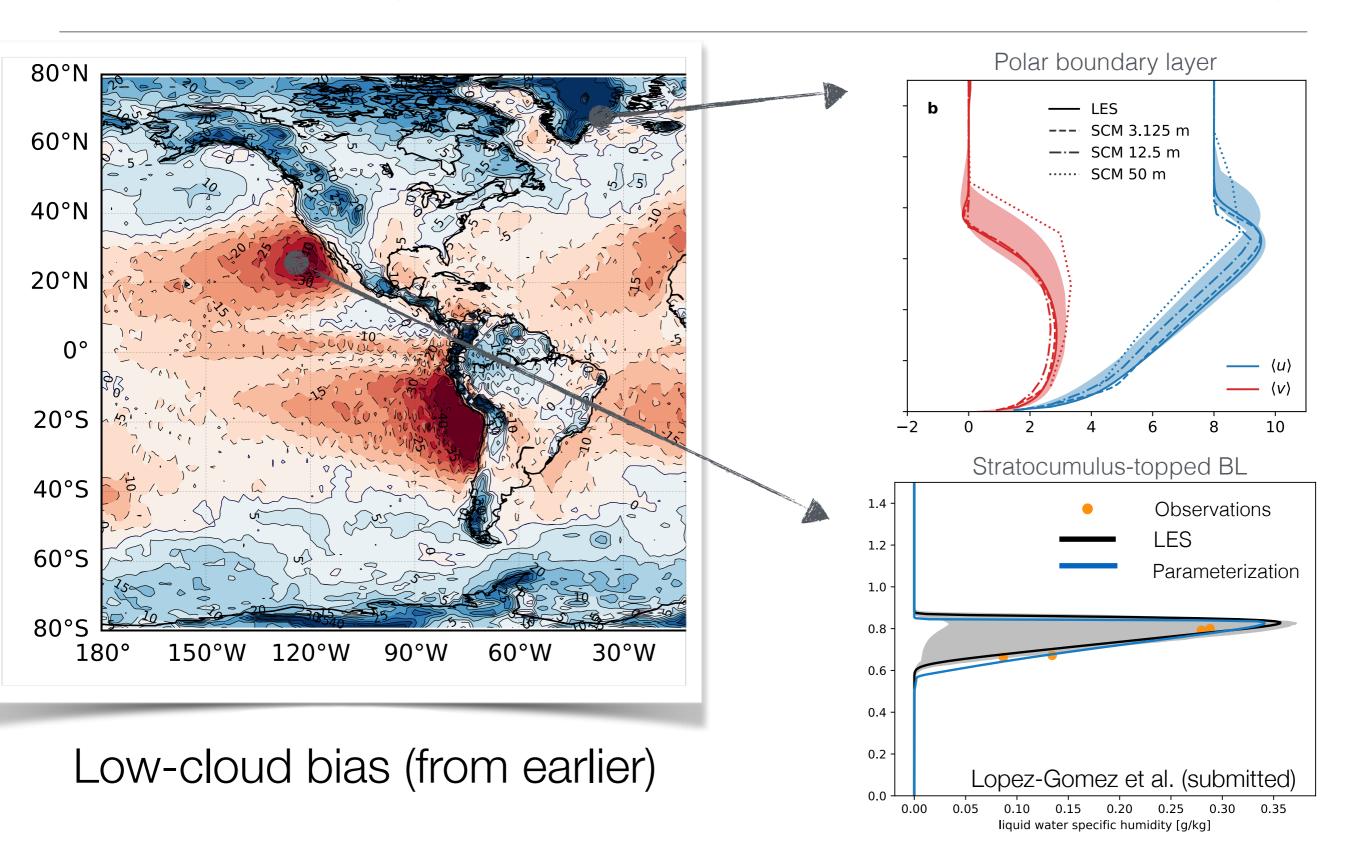
$$-\frac{\partial p_{nh}}{\partial z} = -\rho a \left(\alpha_b \overline{b} + \alpha_d \frac{\left(\overline{w}^{up} - \overline{w}^{env} \right) \left| \overline{w}^{up} - \overline{w}^{env} \right|}{Ha^{1/2}} \right)$$

 $K = c_{k} l \sqrt{TKE}$

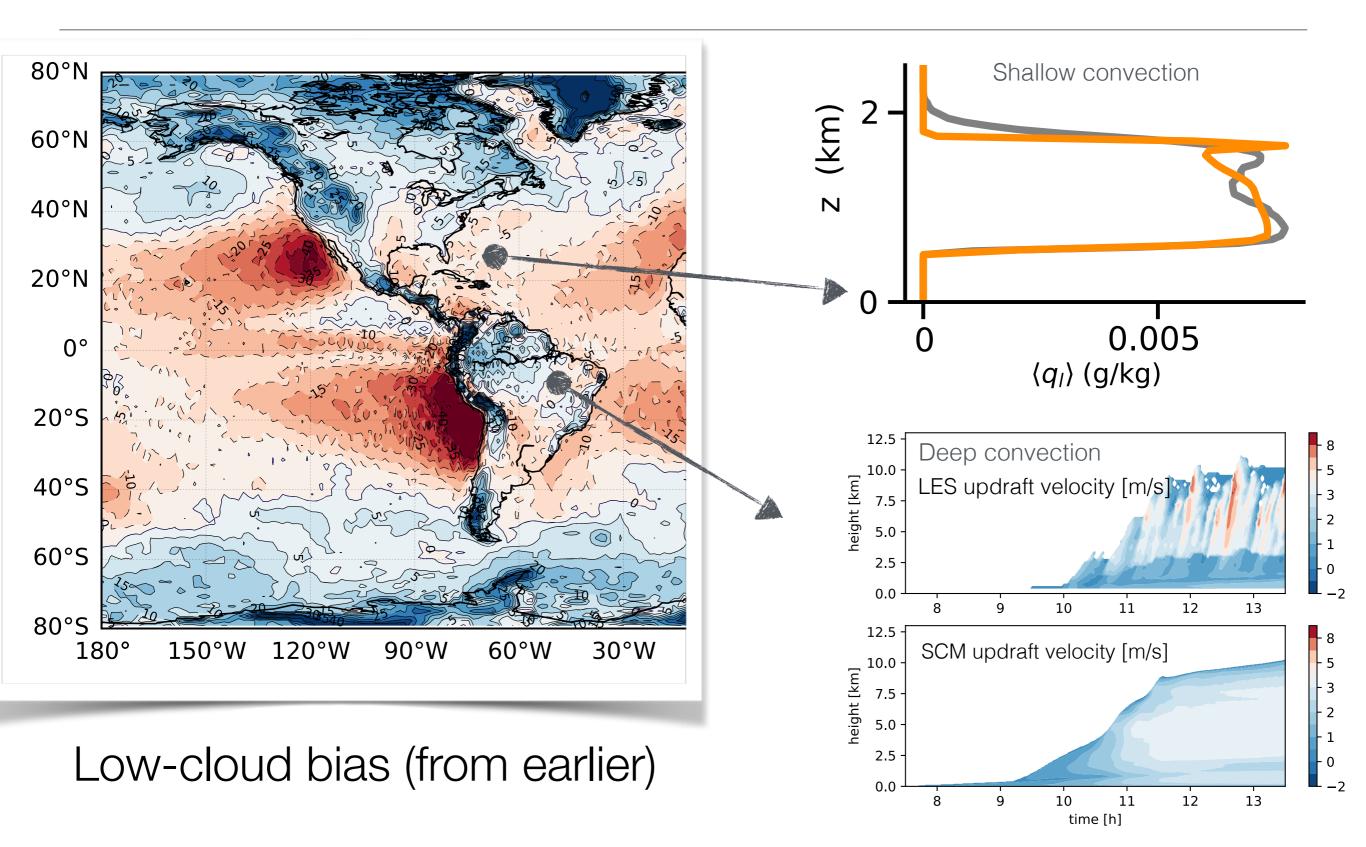
$$\varepsilon, \delta = c_{\varepsilon} \frac{1}{L} f(RH...)$$

$$\frac{dh}{dt} = -\rho a \left(\alpha_{t} \overline{b} + \alpha_{t} \frac{\left(\overline{w}^{up} - \overline{w}^{env} \right) \left| \overline{w}^{up} - \overline{w}^{env} \right|}{\left| \overline{w}^{up} - \overline{w}^{env} \right|} \right)$$

Reduced-order model captures polar and subtropical boundary layer and clouds (which have vexed climate models for decades)



It also captures shallow and deep cumulus convection



The new unified turbulence and convection scheme...

- is prognostic (essential at high host model resolution)
- captures dynamical regimes from boundary layer turbulence to deep convection
- reduces number of adjustable parameters relative to the plethora of parameters in traditional schemes

Next step is implementation in climate model, calibration and UQ with ~10,000 LES driven by climate model (first dozen running on Google Cloud Platform right now)

Calibrating a climate model and quantifying its uncertainties

Andrew Stuart

Emmet Cleary

Alfredo Garbuno

We want to improve climate models in a similar way that weather forecasts have improved, though data assimilation approaches

We are using **statistics accumulated in time** (e.g., over seasons) to calibrate model components jointly by:

- 1. *Minimizing model biases,* especially biases that are known to correlate with the climate response of models. That is, we will minimize mismatches between time averages of ESM-simulated quantities and data, directly targeting quantities relevant for climate predictions.
- 2. *Minimizing model-data mismatches in higher-order Earth system statistics,* e.g., covariances such as cloud-cover/surface temperature covariances, which are known to correlate with the climate response of models. Higher-order statistics relevant for predictions (e.g., precipitation extremes) are also included in objective function.

Learning from climate statistics presents challenges and opportunities

- Matching statistics results in **smoother** objective functions than matching trajectories (as is done in weather prediction)
- Climate-relevant statistics such as covariances between cloud cover and temperature (*emergent constraints*) and precipitation extremes can be included in objective function
- But objective function evaluation (accumulation of averages) is **extremely expensive**

Our setting for learning about parameters (or parametric or nonparametric functions)

Find Parameter θ From Data y

Let $G: \Theta \mapsto \mathcal{Y}$, and η be noise. Then data and parameter are related by

$$y = G(\theta) + \eta, \quad \eta \sim N(0, \gamma^2 I).$$

Our Setting

- \triangleright Calibration and UQ for θ are both important.
- G is expensive to evaluate.
- G is only approximately available.
- Derivatives of G are not available.

Optimization approach

Formulation

$$egin{aligned} & heta^{\star} = \mathrm{argmin}_{m{ heta}\in\Theta} \, \Phi(m{ heta}; y), \ & \Phi_0(m{ heta}; y) = rac{1}{2\gamma^2} |y - \mathsf{G}(m{ heta})|^2, \ & \Phi(m{ heta}; y) = rac{1}{2\gamma^2} |y - \mathsf{G}(m{ heta})|^2 + rac{1}{2} \langle m{ heta}, \Sigma^{-1} m{ heta}
angle. \end{aligned}$$

Algorithms: parameter Θ calibration (e.g., derivative-free ensemble methods, O(10²) evaluations of *G*; scale well to high-dimensional data and parameter spaces)

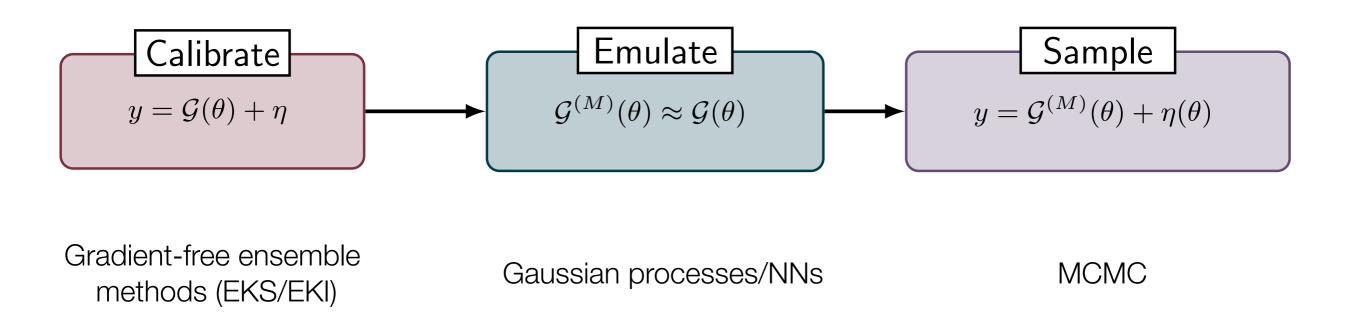
Bayesian approach

Formulation

$$\begin{split} \mathbb{P}(\boldsymbol{\theta}|\boldsymbol{y}) &\propto \mathbb{P}(\boldsymbol{y}|\boldsymbol{\theta}) \times \mathbb{P}(\boldsymbol{\theta}), \\ \mathbb{P}(\boldsymbol{\theta}|\boldsymbol{y}) &\propto \exp\left(-\Phi_0(\boldsymbol{\theta};\boldsymbol{y})\right) \times \exp\left(-\frac{1}{2}\langle \boldsymbol{\theta},\boldsymbol{\Sigma}^{-1}\boldsymbol{\theta}\rangle\right) \\ &\propto \exp\left(-\Phi(\boldsymbol{\theta};\boldsymbol{y})\right) \end{split}$$

Algorithms: parameter Θ sampling (e.g., MCMC, O(10⁵) evaluations of *G*; not feasible for climate models)

We combine calibration and Bayesian approaches in a three step process for fast Bayesian learning



- Experimental design (where to place high-resolution simulations) can be incorporated into CES pipeline
- Gives approximate Bayesian posterior (i.e., quantified uncertainties, including covariance structure of error etc.)

Proof-of-concept in idealized general circulation model (GCM)

- GCM is an idealized aquaplanet model
- It has a simple convection scheme that relaxes temperature and specific humidities to reference profiles

$$\partial_t T + v \cdot \nabla T + \dots = -\frac{T - T_{\text{ref}}}{\tau}$$
$$\partial_t q + v \cdot \nabla q + \dots = -\frac{q - RH_{\text{ref}}q^*(T_{\text{ref}})}{\tau}$$

• Two closure parameters: timescale τ and reference relative humidity RH_{ref}

(1) Calibrate with ensemble Kalman inversion



Objective function has *relative humidity, mean precipitation, and precipitation extremes*

Ensemble Kalman *inversion* for parameters in convection scheme: ensemble of size 100 converges in ~5 iterations

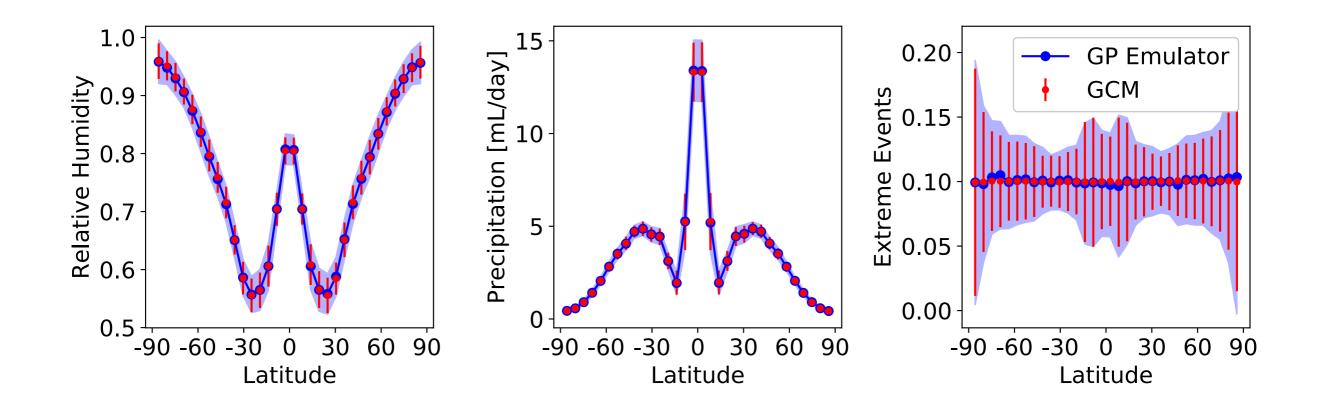
(1) Calibrate with ensemble Kalman inversion



Objective function has *relative humidity, mean precipitation, and precipitation extremes*

Ensemble Kalman *inversion* for parameters in convection scheme: ensemble of size 100 converges in ~5 iterations

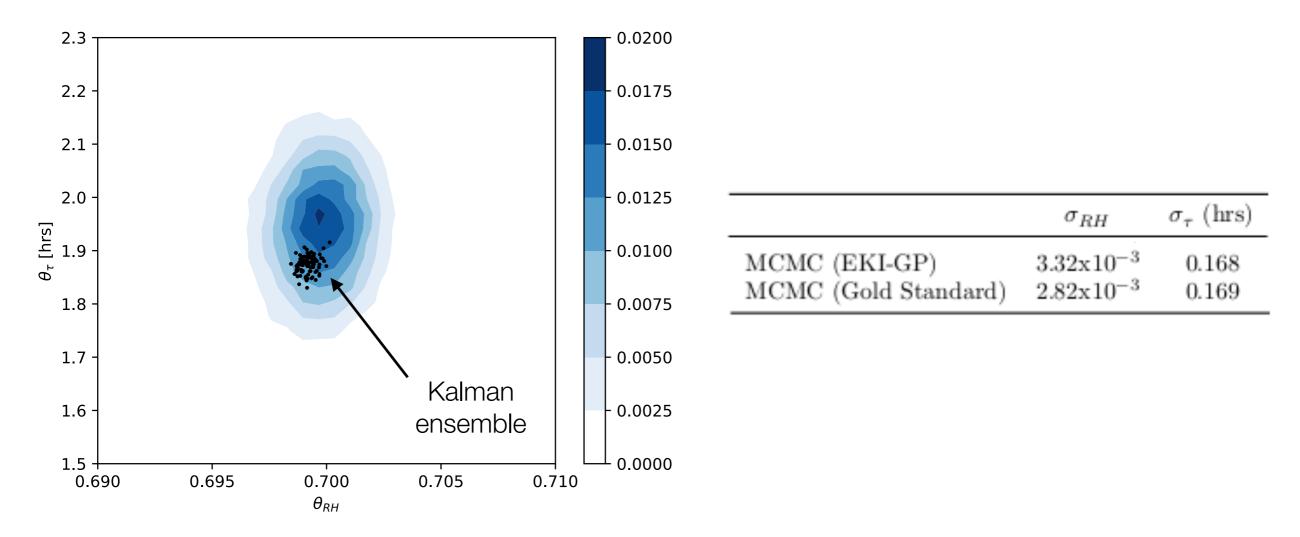
(2) **Emulate** parameters-to-statistics map during calibration step with Gaussian processes



Effective emulation of model statistics at vanishing marginal cost; additional important advantage: smoothing of objective function (can be replace by NNs for better scaling)

(3) **Sample** emulator to obtain posterior PDF for uncertainty quantification

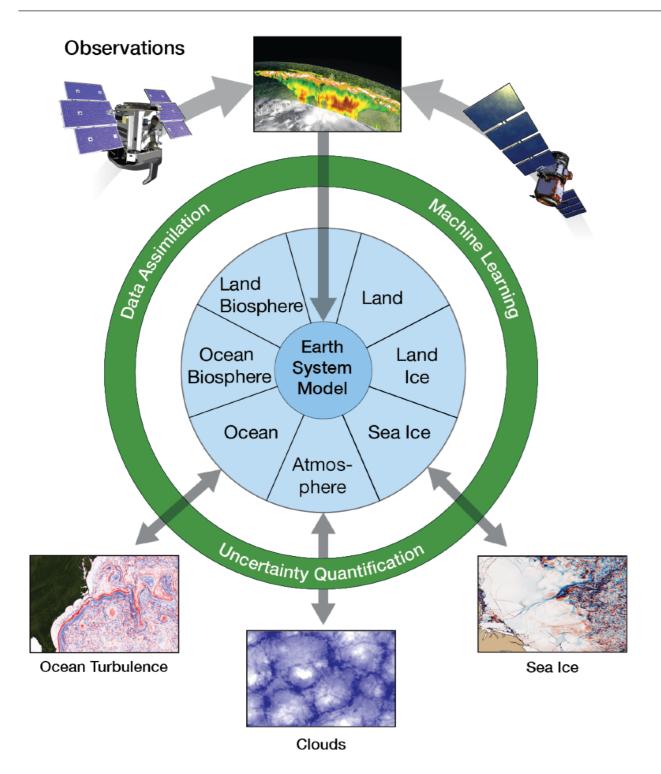
MCMC (500,000 iterations) on GP trained on ensemble gives good estimate of posterior PDF



Approximate Bayesian inversion at 1/1000th the cost of standard methods First calibrate-emulate-sample paper: <u>https://arxiv.org/abs/2001.03689</u>

Courtesy Emmet Cleary

We are pursuing the same approach for all components of the new Earth system model



5-year goals

- Build a model that learns automatically from observations and high-resolution simulations
- Achieve at least factor 2 reduction in rms error of climate simulations and impacts (e.g., in rainfall extremes)
- Serve as anchor of ecosystem of downstream apps, e.g., for infrastructure planning or projections of wildfire and flood risks.

Core design principles for CliMA's model

- Require performance-portability and scalability across different hardware architectures with accelerators (facilitated by Julia programming paradigms and collaboration with MIT Julia Lab)
- Atmosphere, ocean, land, and (eventually) sea ice share computational kernels, maximizing code re-use and facilitating coupling and optimization
- Use consistent thermodynamics, microphysics etc. across the entire model
- Develop unified parameterizations through hierarchical approximations that can be refined as more data become available
- Couple parameterized processes consistently with their underlying distributional assumption (e.g., subsample microphysics from subgrid-scale distributions of dynamical quantities)

Conclusions

- Reducing and quantifying uncertainties in climate models is urgent but within reach
- To reduce and quantify uncertainties, we combine process-informed models with data-driven approaches using climate statistics
- Physics-based subgrid-scale models can capture turbulence and cloud regimes that have vexed climate models for decades
- Our subgrid-scale models will learn both from observations and (where possible) from high-resolution simulations spun off on the fly
- Calibrate-emulate-sample forms the core of the data assimilation/ machine learning layer and achieves up to 1,000x speed-up relative to traditional Bayesian learning methods

Much interesting work (SGS models, more effective filtering strategies, optimal targeting of high-res simulations...) remains to be done!

With thanks to CliMA's funders

ERIC AND WENDY SCHMIDT

SCHMIDT FUTURES

MOUNTAIN PHILANTHROPIES

CHARLES TRIMBLE

RONALD AND MAXINE LINDE CLIMATE CHALLENGE

