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The Arctic is warming

Huntington et al. 2020

J. Watson, satellite SST 
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Danielson et al. 2020
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Warmer ocean - influence on phytoplankton composition?

Temperature Sea Ice

?
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Lewis et al. 2020

Increasing picoplankton and primary production

North Atlantic 

Moran et al. 2010

Arctic (including Chukchi S.)



U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 5

Temperature and nutrients influence species growth

Danielson et al. 2020
Kremer et al. 2017
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Potential climate-driven changes in ecosystems



U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 7

Project goals: Can we assess phytoplankton changes using satellites? 

• Use satellite ocean color data (VIIRS, MODIS, GlobColour) for N. Bering & 

Chukchi seas, ground-truth with in situ data:  

1) analyze community size structure based on remote-sensing empirical 

chlorophyll-a -based algorithms and reflectance (Rrs(λ)); 

2) Use Rrs(λ) to determine changes in Synechococcus (small photosynthetic 

cyanobacteria) (Lange et al. 2020); 

3) Explore correlative methods to assess the probability of occurrence of harmful 

algae such as Alexandrium spp. using satellites (Sentinel 3-A-OLCI). 

4) Estimate diatom abundances from Rrs(λ)



Size-fractionated chlorophyll in-situ datasets
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In-situ dataset:

- 221 samples

- Surface samples (depth < 10 m)

- Size-fractionated filtration 

Micro: > 20 µm

Nano: 5-20 µm

Pico: < 5 µm

- Years: 2017 and 2019

- Months: June to September.



Size-fractionated data – Bering Sea (<10 μm & >10 μm)
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2nd In-situ dataset:

- ~1500 samples

- Surface samples (depth < 10 m)

- Size-fractionated filtration (<10 μm & 

>10 μm)

- Years: 2003 and 2021

- Months: August - September.
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Size fraction models

Brewin et al. 2010
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Phytoplankton size fractions:

Micro: > 20 µm

Nano: 5-20 µm

Pico: < 5 µm

Bering / Chukchi data
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Regionally-parameterized model“Global” parameters

Brewin et al. 2010 global vs regional 

More picoplankton 

relative to total chl-a

in “our” data
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Brewin et al. 2010 global vs regional parameters

“Global” parameters Regionally-parameterized model

Less nanoplankton
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Brewin et al. 2010 regional 
Regionally-parameterized model

Micro (>20 μm) Nano (5 -20 μm) Pico (<5 μm)
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Chl-a size fraction modeling - comparisons

Basic model used for all 3 size fractions: 

Size chl-a ~ total chl-a + SST

Comparative approaches

• Brewin et al. 2010 (only total chl-a). 

• Generalized additive model (GAM) 

• Random forest model
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Picoplankton (<5 μm) predictions from different models
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Model performance - Bootstrap analysis (80/20)



U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 17

Combining GAMchla_sst model 

and Globcolour chl-a data

(>20 µm)
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Mann-Kendall trend test

s = slope 

p = p-value
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Picoplankton 2019

Sqrt (μg/l)

Synechococcus spp. 2019

(from flow cytometry)

Sqrt (cells / ml)
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Project goals: Can we assess phytoplankton changes using satellites? 

• Use satellite ocean color data (VIIRS, MODIS, GlobColour) for N. Bering & 

Chukchi seas, ground-truth with in situ data:  

1) analyze community size structure based on remote-sensing empirical 

chlorophyll-a -based algorithms and reflectance (Rrs(λ)); 

2) Use Rrs(λ) to determine changes in Synechococcus (small photosynthetic 

cyanobacteria) (Lange et al. 2020); 

3) Explore correlative methods to assess the probability of occurrence of harmful 

algae such as Alexandrium spp. using satellite products (Sentinel 3-A-OLCI). 

4) Estimate diatom abundances from Rrs(λ)



Phytoplankton community change – NBS/Chukchi Sea

• In the ‘warm’ summer of 2017, there was relatively high 

diatom biomass. 

• In the “very warm” summer of 2019 Synechococcus

commonly exceeded diatom biomass.
Porgorzelec et al. 2017. MEPS. 569: 77-88 (top photo); https://www.whoi.edu/science/b/people/ewebb/syne.html (bottom photo) 

Lomas et al. in prep

Synechococcus is ~ 

1/100 the size of 

many diatoms 

Synechococcus to 

diatom biomass ratio 

(S:D) vs temperature

https://www.whoi.edu/science/b/people/ewebb/syne.html


Suomi-NPP VIIRS Rrs data

Spatial resolution: 750 m / 2 km match-up

Temporal resolution: daily / 3 days match-up

In-situ Synechococcus:     n = 739

Match-up with VIIRS Rrs:  n = 104

Synechococcus abundance from VIIRS Rrs (2012-2022)

Method: Principal Component Regression following 

Lange et al. 2020



VIIRS Rrs : PCA loadings



Synechococcus (cells mL-1) from VIIRS Rrs predictions

Predictors R2 MAE Bias RMSE N

PC3, PC4 0.45 0.77 < 0.001 0.95 104

PC3, PC4, SST 0.63 0.65 < 0.001 0.79 104
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Project goals: Can we assess phytoplankton changes using satellites? 

• Use satellite ocean color data (VIIRS, MODIS, GlobColour) for N. Bering & 

Chukchi seas, ground-truth with in situ data:  

1) analyze community size structure based on remote-sensing empirical 

chlorophyll-a -based algorithms and reflectance (Rrs(λ)); 

2) Use Rrs(λ) to determine changes in Synechococcus (small photosynthetic 

cyanobacteria) (Lange et al. 2020); 

3) Explore correlative methods to assess the probability of occurrence of harmful 

algae such as Alexandrium spp. using satellite products (Sentinel 3-A-OLCI). 

4) Estimate diatom abundances from Rrs(λ)
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Harmful algae blooms – increasing in the Pacific arctic

Hendrix et al. 2021

Alaskan (2018–2020) Alexandrium catenella cyst 

abundance in surface sediments. Sites visited across 

multiple years were averaged to create maps.

Anderson et al. 2021, 2022



U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 28

Harmful algae blooms – satellites 
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HAB: 

Alexandrium

Phytoplankton 

species 

information –

crucial for 

developing 

algorithms and for 

understanding 

responses to 

climate change
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Summary
• Regionally tuned models perform best for all three size fractions, with total chlorophyll being the most 

important predictor, while SST helps improve the fit for picoplankton (<5um). 

• Preliminary analyses suggest increasing picoplankton in June and July, particularly during the warm 

2017-2019. Such changes in size composition, along with earlier sea ice retreat and bloom timing, will 

influence plankton food web structure and function. 

• Promising results of estimating Synechococcus abundance from VIIRS Rrs data. 

Next steps
• Develop size-fraction models using size fraction dataset (<10, >10 μm) collected in the Bering Sea 

(2003-2019). 

• Use Synechococcus estimation model in combination with long-term (2012-2022) VIIRS data to 

assess potential inter-annual and decadal changes in Synechococcus abundances. 

• Develop algorithms to detect harmful algae blooms (e.g. Alexandrium). 


