

NOAA FISHERIES

Alaska
 Fisheries
 Science Center

Satellite analysis of shifts in phytoplankton community composition and energy flow in the new Arctic

Jens Nielsen, Lisa Eisner (NOAA AFSC) Priscila Lange, Mike Lomas (Bigelow Lab) Calvin Mordy, Phyllis Stabeno (NOAA PMEL) Kathi Lefebvre (NOAA NWFSC) Cara Wilson, Dale Robinson (NOAA PolarWatch) Jeanette Gann (NOAA AFSC)

Funded by NOAA Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) initiatives (3 years, June 2021- 2024)

The Arctic is warming

Huntington et al. 2020

Danielson et al. 2020

Warmer ocean - influence on phytoplankton composition?

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 3

Increasing picoplankton and primary production

Temperature and nutrients influence species growth

NOAA FISHERIES

Potential climate-driven changes in ecosystems

Project goals: Can we assess phytoplankton changes using satellites?

- Use satellite ocean color data (VIIRS, MODIS, GlobColour) for N. Bering & Chukchi seas, ground-truth with *in situ* data:
- analyze community size structure based on remote-sensing empirical chlorophyll-a -based algorithms and reflectance (R_{rs}(λ));
- 2) Use R_{rs}(λ) to determine changes in *Synechococcus* (small photosynthetic cyanobacteria) (Lange et al. 2020);
- 3) Explore correlative methods to assess the **probability of occurrence of harmful algae** such as *Alexandrium* spp. using satellites (Sentinel 3-A-OLCI).
- 4) Estimate **diatom** abundances from $R_{rs}(\lambda)$

Size-fractionated chlorophyll in-situ datasets

In-situ dataset:

- 221 samples
- **Surface samples** (depth < 10 m)
- Size-fractionated filtration
 Micro: > 20 μm
 Nano: 5-20 μm
 Pico: < 5 μm

- Years: 2017 and 2019
- Months: June to September.

Size-fractionated data – Bering Sea (<10 µm & >10 µm)

2nd In-situ dataset:

- ~1500 samples
- Surface samples (depth < 10 m)
- Size-fractionated filtration (<10 µm & >10 µm)
- Years: 2003 and 2021
- Months: August September.

Size fraction models

Brewin et al. 2010

Bering / Chukchi data

Phytoplankton size fractions: **Micro**: > 20 μ m **Nano**: 5-20 μ m **Pico**: < 5 μ m

Brewin et al. 2010 global vs regional

Brewin et al. 2010 global vs regional parameters

NOAA FISHERIES

Brewin et al. 2010 regional

Regionally-parameterized model

Micro (>20 µm)

Pico (<5 µm)

Chl-a size fraction modeling - comparisons

Basic model used for all 3 size fractions: Size chl-a ~ total chl-a + SST

Comparative approaches

- Brewin et al. 2010 (only total chl-a).
- Generalized additive model (GAM)
- Random forest model

Picoplankton (<5 µm) predictions from different models

Model performance - Bootstrap analysis (80/20)

Size class	Metric	Brewin _{chla}	GAM_{chla}	GAM_{chla_sst}	RD_{chla_sst}
Pico (< 5 µm)	RMSE	0.304	0.299	0.292	0.288
Pico (< 5 μm)	R^2	0.25	0.28	0.31	0.33
	_	_			
Nano (5- 20 µm)	RMSE	0.296	0.261	0.263	0.271
Nano (5- 20 µm)	R^2	0.61	0.64	0.64	0.61

Micro (> 20 µm)	RMSE	0.259	0.241	0.245	0.258
Micro (> 20 µm)	R ²	0.87	0.88	0.87	0.86

Combining GAM_{chla_sst} model and Globcolour chl-*a* data

Mann-Kendall trend test s = slope p = p-value

Mann-Kendall	Pico		Nano		Micro	
	p	S	p	S	р	S
June	<0.01*	0.48	0.76	-0.05	<0.01*	-0.46
July	<0.05*	0.35	0.91	0.02	0.17	-0.20
August	0.13	0.22	0.15	0.21	0.52	0.01
September	0.90	0.02	0.76	-0.05	0.31	0.15

Picoplankton 2019

Synechococcus spp. 2019 (from flow cytometry)

OAA FISHERIES

400

300

200

100

Project goals: Can we assess phytoplankton changes using satellites?

- Use satellite ocean color data (VIIRS, MODIS, GlobColour) for N. Bering & Chukchi seas, ground-truth with *in situ* data:
- analyze community size structure based on remote-sensing empirical chlorophyll-a -based algorithms and reflectance (R_{rs}(λ));
- 2) Use R_{rs}(λ) to determine changes in *Synechococcus* (small photosynthetic cyanobacteria) (Lange et al. 2020);
- 3) Explore correlative methods to assess the **probability of occurrence of harmful algae** such as *Alexandrium* spp. using satellite products (Sentinel 3-A-OLCI).
- 4) Estimate **diatom** abundances from $R_{rs}(\lambda)$

Phytoplankton community change – NBS/Chukchi Sea

Synechococcus

OAA FISHERIES

many diatoms

- In the '*warm*' summer of 2017, there was relatively high diatom biomass.
- In the "*very warm*" summer of 2019 Synechococcus commonly exceeded diatom biomass.

Porgorzelec et al. 2017. MEPS. 569: 77-88 (top photo); https://www.whoi.edu/science/b/people/ewebb/syne.html (bottom photo)

Synechococcus to diatom biomass ratio (S:D) vs temperature

Synechococcus abundance from VIIRS *R_{rs}* (2012-2022)

Suomi-NPP VIIRS *R*_{rs} data

Spatial resolution: 750 m / 2 km match-up Temporal resolution: daily / 3 days match-up

> In-situ *Synechococcus*: n = 739Match-up with VIIRS R_{rs} : n = 104

Method: Principal Component Regression following Lange et al. 2020

VIIRS R_{rs} : PCA loadings

Synechococcus (cells mL⁻¹) from VIIRS R_{rs} predictions

Predictors	R ²	MAE	Bias	RMSE	Ν
PC3, PC4	0.45	0.77	< 0.001	0.95	104
PC3, PC4, SST	0.63	0.65	< 0.001	0.79	104

Project goals: Can we assess phytoplankton changes using satellites?

- Use satellite ocean color data (VIIRS, MODIS, GlobColour) for N. Bering & Chukchi seas, ground-truth with *in situ* data:
- analyze community size structure based on remote-sensing empirical chlorophyll-a -based algorithms and reflectance (R_{rs}(λ));
- Use R_{rs}(λ) to determine changes in Synechococcus (small photosynthetic cyanobacteria) (Lange et al. 2020);
- 3) Explore correlative methods to assess the probability of occurrence of harmful algae such as *Alexandrium* spp. using satellite products (Sentinel 3-A-OLCI).
 4) Estimate diatom abundances from R_{rs}(λ)

Harmful algae blooms – increasing in the Pacific arctic

Anderson et al. 2021, 2022

Alaskan (2018–2020) *Alexandrium catenella* cyst abundance in surface sediments. Sites visited across multiple years were averaged to create maps.

Hendrix et al. 2021

Harmful algae blooms – satellites

HAB: Alexandrium

Phytoplankton species information crucial for developing algorithms and for understanding responses to climate change

Summary

- Regionally tuned models perform best for all three size fractions, with total chlorophyll being the most important predictor, while SST helps improve the fit for picoplankton (<5um).
- Preliminary analyses suggest increasing picoplankton in June and July, particularly during the warm 2017-2019. Such changes in size composition, along with earlier sea ice retreat and bloom timing, will influence plankton food web structure and function.
- Promising results of estimating Synechococcus abundance from VIIRS R_{rs} data.

Next steps

- Develop size-fraction models using size fraction dataset (<10, >10 μm) collected in the Bering Sea (2003-2019).
- Use Synechococcus estimation model in combination with long-term (2012-2022) VIIRS data to assess potential inter-annual and decadal changes in Synechococcus abundances.
- Develop algorithms to detect harmful algae blooms (e.g. Alexandrium).

