Satellite-based optical water classifications in global oceans

Jianwei Wei

¹ NOAA/NESDIS/STAR, Satellite Oceanography and Climatology Division ² Global Science & Technology, Inc.

Acknowledgments

Collaborators:

Menghua Wang	– NOAA/STAR					
Karlis Mikelsons	– NOAA/STAR					
Lide Jiang	– NOAA/STAR					
Susanne Kratzer	 University of Stockholm 					
Zhongping Lee	 University of Massachusetts at Boston 					
Tim Moore	 Harbor Branch Oceanographic Institute 					
Heidi M. Sosik	 Woods Hole Oceanographic Institution 					
Dimitry Van der Zande – Royal Belgian Institute of Natural Sciences						

Funding sources:

NOAA; Joint Polar Satellite System (JPSS)

A complex system

Credit: NASA SVS

high

Water classifications started with human-eye observations...

- ✓ It consists of 21 scales designed by Forel (1890) and Ule (1892)
- \checkmark It is the first attempt to divide the oceans based on their colors
- ✓ It has accumulated the longest ocean optical records (>100 years)

✓ First quantitative classifications: I-III for open oceans, 1-9 for coastal oceans

✓ Occasionally used in the ocean color remote sensing and ocean modeling systems

Case 1 & Case 2 classifications Recommended readings: Morel & Prieur (1977); Mobley (2004) Phytoplankton Phytoplankton CDOM & detritus **CDOM & detritus**

- ✓ It is this classification that has been frequently referred to in various presentations
- ✓ It played an important role for bio-optical modeling and the development of the ocean color satellites
- ✓ No clear demarcation line to separate Case 1 and Case 2 waters

Satellite ocean color data

Priority problems

✓ Compatible/applicable

✓ Reliable

✓ Comparable

This requires the classifications are insensitive to the number of wavelengths of the satellite sensors

✓ Distinguishable

The resultant water classes are ideally distinctive from each other

Hyperspectral data

✓ Training data consist of in situ measurements and simulations

Hyperspectral clusters (k = 23) based on spectral similarity

✓ Cosine distance between two individual nRrs spectra is computed:

 $d = 1 - \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} \quad .$

Model implementation with SNPP VIIRS

Satellite water classes data are online

https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html

Validations with in situ and satellite matchups

Variation and distinction of bio-optical properties (based on the SNPP VIIRS 2012-2020 data)

 a_{pq} : total absorption coefficient

b_{bp}: backscattering coefficient of particles

a_{ph}: absorption coefficient of phytoplankton

 a_{dq} : absorption coefficient of CDOM & detritus

Variation and distinction of bio-optical properties (based on the SNPP VIIRS 2012-2020 data)

Chl-a: chlorophyll-a concentration

 a_{ph}^{*} : Chl-a specific absorption

K_d: diffuse attenuation coefficient

SPM: suspended particulate matter

Water classes from multispectral satellites

Northeast coastal oceans of the US and Canada

Wavelength

Sentinel 3A OLCI: 400, 413, 443, 490, 510, 560, 620, 665, 674, 681 nm SNPP VIIRS: 410, 443, 486, 551, 671 nm

Spatial resolution

Sentinel 3A OLCI: 300 m SNPP VIIRS: 750 m

Water classes from hyperspectral & multispectral satellites

Lake Erie

HICO: >50 visible bands; 90 m resolution VIIRS: 5 visible bands; 750m resolution

Water classes from hyperspectral & multispectral satellites

Chesapeake Bay

Models vs. satellite Rrs spectra

Percentage differences

Class	410	443	486	551	670
1	0.5%	-0.9%	-2.1%	7.0%	103.0%
2	0.7%	-1.5%	-0.9%	19.8%	121.4%
3	4.2%	-3.0%	-4.8%	14.1%	99.8%
4	4.0%	-1.6%	-4.8%	5.8%	68.2%
5	-1.4%	3.2%	-1.0%	-4.9%	34.9%
6	4.8%	-0.2%	-5.4%	2.1%	34.3%
7	-3.7%	2.6%	1.7%	-5.6%	13.4%
8	7.0%	0.8%	-3.8%	-3.6%	14.9%
9	-12.5%	1.5%	5.0%	-3.1%	13.4%
10	-2.6%	0.9%	0.1%	0.1%	15.5%
11	9.0%	1.9%	-7.2%	-3.5%	-12.6%
12	-17.2%	3.3%	8.6%	-5.6%	4.1%
13	4.8%	0.3%	-4.5%	-0.3%	-2.7%
14	-6.4%	3.6%	5.2%	-4.2%	-1.0%
15	-39.6%	-1.6%	9.4%	-1.1%	-25.2%
16	-4.8%	2.2%	-0.9%	-0.9%	1.9%
17	-24.7%	4.2%	7.0%	-2.3%	1.5%
18	-92.1%	-10.1%	5.4%	3.0%	-41.9%
19	-9.6%	18.9%	9.3%	-3.6%	-3.7%
20	-98.9%	1.0%	14.2%	-3.3%	-0.8%
21	3.3%	3.2%	-2.9%	-1.3%	1.7%
22	-95.2%	-13.0%	-0.7%	2.7%	-3.2%
23	-97.2%	-5.3%	12.3%	0.0%	-2.9%

Coherency between water classes & water bio-optical properties

20

Time series (monthly)

Coherency between water classes & water bio-optical properties

Spatial variation

Time series (monthly)

Satellite water classes as ocean ecological provinces

Ocean subtropical gyres quantified as "Class 1" waters

Month of year

Summary

- 1. Experimental data products of the optical water classes are being routinely generated from VIIRS.
- 2. The resultant water classes have distinctive bio-optical properties and are reliable.
- 3. A hyperspectral classification model is developed based on the spectral similarity of Rrs.
- 4. Decades-long (and consistent) time series of water classes can be created from the suite of satellite missions.
- 5. Case analyses are demonstrated for potential applications.

Publication

Wei, J., M. Wang, K. Mikelsons, L. Jiang, S. Kratzer, Z. P. Lee, T. Moore, H. M. Sosik, and D. Van der Zande (2022), Global satellite water classification data products over oceanic, coastal, and inland waters, *Remote Sensing of Environment*, *282*, doi: <u>https://doi.org/10.1016/j.rse.2022.113233</u>.

Backup slides

Variances of nRrs

Uncertainties associated with atmospheric correction

- □ An error (ε) was added to $nR_{rs}(\lambda)$ at one wavelength only for each simulation.
- □ Minor errors in $nR_{rs}(\lambda)$ (i.e., ±10% in this study) exert minimal influence on the resulting water classes.
- □ When errors reach \pm 30% and \pm 50%, the uncertainties in the water class products can increase substantially.
- □ In extremely clear waters, such as Class 1–3, the blue bands play a major role in the water class uncertainties.
- □ In contrast, the green and red bands are relatively more important in the opposite end of the water classes, such as Class 19–23.
- □ Subplot "g" shows excessive negative errors -100% added to nRrs. However, error-disturbed $nR_{rs}(410)$ do not significantly increase the water class uncertainty for Class 15, 17, 18, 20-23.

VIIRS-generated water classes

Browse the experimental water classes data at OCView (Ocean Color Viewer):

https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html