

Estimating the Benefits of Ocean

Color Data
in Mitigating HAB Events

Research Team

- Global Science and Technology, Inc.
 - Tracy Rouleau, Project Lead
 - Jeffery Adkins, Project Advisor
 - Jacob Fooks, Economic Analysis
 - Aaron Kornbluth, GIS Analysis
- Many thanks to Marilyn Yuen Murphy and Samir Chettri for their support on this project
- Funding for this work was provided by NESDIS/STAR Product Development, Readiness, and Application Program

Overview

- Intro and Context
- Approach
 - Estimating the Impact of Harmful Algal Blooms (HABs)
 - Assessing how Ocean Color (OC) can mitigate HAB impacts
- Findings
- Discussion

*Technical report will available soon through the NOAA Repository

TASK: Assess the benefits of ocean color data

- Identify key social and economic benefits
- Build on work that has already been done
- Develop new tools and techniques for valuing satellite observations/information
- 6-month timeframe

https://repository.library.noaa.gov/view/noaa/47719 https://repository.library.noaa.gov/view/noaa/33278

Approach

- Start by considering the full universe of ocean color benefits
- Identify best value chain for a deeper dive
- Develop a framework that can provide initial estimates AND be used to refine estimates in the future

	Annual Millions \$		Present Valu 7 Perc Discount	ent	2052, Millions of 2019 \$ 3 Percent Discount Rate		
Ocean Color	Low	High	Low	High	Low	High	
Quantified Benefits (8 of 22 value chains)	\$5.19	\$49.56	\$23.10	\$219.80	\$53.30	\$506.50	
Total Costs			\$465.40	\$465.40	\$689.70	\$689.70	
Benefits / Costs			5%	47%	8%	73%	

Approach

- Estimating the economic impact of HABs
 - Benefits transfer meta analysis applying economic damage estimates to known HAB events across the US

- How can Ocean Color mitigate HAB impacts?
 - Intended extensive outreach to HAB users to understand how OC information reduces the impacts of HAB events
 - Short-time frame impeded outreach efforts
 - Used assumption of 5% reduction from Geo/XO study
- Geospatial Analysis
 - Analyze HAB impacts on a spatial scale
 - Overlay with CDC's Social Vulnerability Index

Findings: Regression Analysis

Table 3. Final Combined Model Estimates for HAB damages.

West			East		Gulf of Mexico		Great Lakes							
Heal	th Impacts		В	p-value		В	p-value		В	p-value		В	p-value	
as a	a baseline	β_0	45.57	0.39		37.68	0.68		37.45	0.69		11.83	0.09	*
		cial Fishing	16.81	0.56		1.68	0.28		14.94	0.27		16.95	0.84	
	Recreation	nal Fishing	-40.12	0.45		-75.51	0.00	***	34.19	0.00	***	10.10	0.53	
	Tourism		4.02	0.86		-20.97	0.09	*	18.59	0.17		9.05	0.64	
	Year		-0.02	0.46		-0.02	0.46		-0.02	0.46		0.46	0.46	
	<u>ln(</u> Popula	ition)	3.47	0.67		0.87	0.78		-3.50	0.24		1.57	0.26	
	In(County	(GDP)	-2.36	0.73		-0.03	0.94		2.20	0.45		1.05	0.33	
	In(Com F	ishing Income)	-1.50	0.30		0.08	0.55		0.46	0.00	***	-3.63	0.03	**
	In(Rec Fis	hing Income)	-1.20	0.00	***	-1.61	0.00	***	-1.20	0.00	***	-1.20	0.00	***
	<u>ln(</u> Touris	m Income)	-0.32	0.84		-0.40	0.98		1.41	0.00	***	-0.32	0.84	
N		2	21			43			37			22		
Adjusted R ²								0.72						

^{*, **, ***} indicate statistical significance at the 10%, 5%, and 1% level, respectively, significant values are in **Bold**.

Findings: National Damage Estimates

Table 5. Total Expected Annual Damages (\$Thousands)

	Commercial	Recreational		Public	- 20
	Fishing	Fishing	Tourism	Health	Total
North Atlantic	29,660	0	47,057	12	76,729
Southeast & Caribbean	22,558	0	36,780	10	59,348
Gulf of Mexico	5,741	13,238	2,748	211	21,938
West	259,075	120	822,815	302	1,082,311
Great Lakes	3,071	16,256	42,255	471	62,053
Total	320,104	29,613	951,655	1,005	1,302,378

Findings:

Estimated expected annual damages due to HAB events by county.

Findings:

Estimated expected annual damages due to HAB events combined with the CDC's Social **Vulnerability** Index

Estimates of the Benefits of Ocean Color Data in Mitigating HAB Events

Discussion

- Total expected annual HAB damages across the CONUS is \$1.3 billion
- Total Expected annual benefit from ocean color products is \$65.1 million
- This analysis is just a first step delivers a framework to drive future work

Discussion

 HAB studies are focused in few areas across the US

 HAB studies focus on larger, less frequent events

•Limited understanding of how ocean color products are *used* to mitigate HAB events

Contact: Tracy Rouleau, tracy@tbdeconomics.com