




# Seascape Applications:

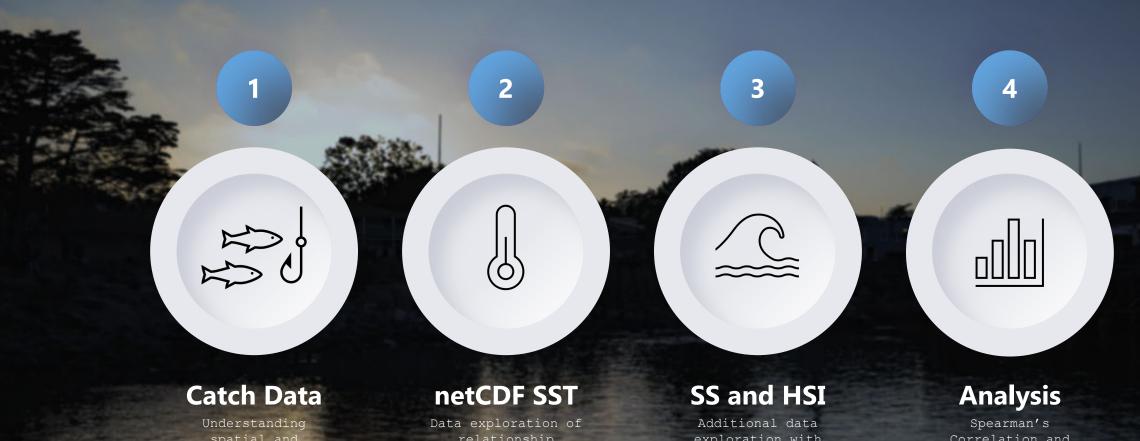
Swordfish Habitat Compression in Proposed Chumash National Marine Sanctuary







#### sland


#### SEASCAPES

Seascapes are classes of water masses defined by surface properties obtained via satellite (temperature, salinity, Chlorophyll a, CDOM, ...) and an ordination statistical process (Kavanaugh et al. 2016).

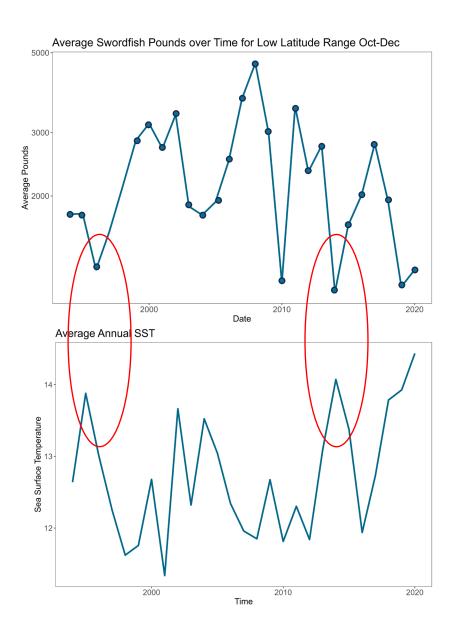
| SEASCAPE ID<br>NUMBER | NOMINAL DESCRIPTOR                              | SST (°C) | SSS (psu)  | ADT (m)    | ICE (%)  | CDOM<br>(m <sup>-1</sup> ) | CHLA<br>(mg m <sup>-3</sup> ) | NFLH<br>(W m <sup>-2</sup><br>um <sup>-1</sup> sr <sup>-1</sup> ) | NFLH:CHL | LATITUDE                      | DOMINANT<br>HEMISPHERE | DOMINANT          |
|-----------------------|-------------------------------------------------|----------|------------|------------|----------|----------------------------|-------------------------------|-------------------------------------------------------------------|----------|-------------------------------|------------------------|-------------------|
|                       | NORTH ATLANTIC SPRING,<br>ACC TRANSITION        | 5.08     | 34.18      | -0.37      | 0        | 0.01                       | 0.21                          | 0.08                                                              | 0.37     | SUBPOLAR                      | SOUTH                  | SPRING-<br>AUTUMN |
|                       | SUBPOLAR TRANSITION                             | 12.23    | 34.43      | 0.5        | 0        | 0.01                       | 0.12                          | 0.06                                                              | 0.51     | TEMPERATE                     | SOUTH                  | YEAR ROUND        |
|                       | TROPICAL SUBTROPICAL<br>TRANSITION              | 24.12    | 35.34      | 0.68       | 0        | 0.01                       | 0.15                          | 0.06                                                              | 0.4      | TROPICAL                      | вотн                   | YEAR ROUND        |
|                       | WESTERN WARM POOL<br>SUBTROPICAL                | 28.25    | 34.4       | 1.1        | 0        | 0                          | 0.06                          | 0.05                                                              | 0.79     | SUBTROPICAL                   | вотн                   | AUTUMN            |
|                       | SUBTROPICAL GYRE<br>TRANSITION                  | 23.95    | 35.89      | 0.71       | 0        | 0                          |                               | 0.04                                                              |          | TEMPERATE                     | вотн                   | AUTUMN-<br>WINTER |
|                       | ACC, NUTRIENT STRESS                            | 1.38     | 34.01      | -1         | 0        | 0.01                       | 0.18                          | 0.07                                                              |          | SUBPOLAR POLAR                | SOUTH                  | WINTER            |
|                       | TEMPERATE TRANSITION                            | 12.98    | 34.72      | 0.37       | 0        | 0.01                       | 0.28                          | 0.11                                                              | 0.41     | TEMPERATE                     | BOTH                   | WINTER            |
|                       | INDOPACIFIC SUBTROPICAL<br>GYRE                 | 25.13    | 34.52      | 0.99       | 0        | 0                          | 0.07                          | 0.02                                                              | 0.34     | SUBTROPICAL                   | вотн                   | YEAR ROUND        |
|                       | EQUATORIAL TRANSITION                           | 28.01    | 33.84      | 0.86       | 0        | 0.01                       | 0.14                          | 0.05                                                              | 0.37     | TROPICAL                      | вотн                   | YEAR ROUND        |
|                       | HIGHLY OLIGOTROPHIC<br>SUBTROPICAL GYRE         | 23.85    | 35.64      | 0.87       | 0        | 0                          | 0.04                          | 0.03                                                              | 0.79     | SUBTROPICAL                   | SOUTH                  | SUMMER            |
|                       | TROPICAL/SUBTROPICAL<br>UPWELLING               | 22.94    | 34.79      | 0.83       | 0        | 0.01                       | 0.27                          | 0.11                                                              | 0.39     | "TROPICAL,<br>SUBTROPICAL"    | вотн                   | WINTER            |
|                       | SUBPOLAR                                        | 8.62     | 32.91      | 0.3        | 0        | 0.02                       | 0.37                          | 0.08                                                              | 0.22     | TEMPERATE/<br>SUBPOLAR        | вотн                   | YEAR ROUND        |
|                       | SUBTROPICAL GYRE<br>MESOSCALE INFLUENCED        | 23.47    | 35.89      | 0.52       | 0        | 0.01                       | 0.1                           | 0.02                                                              | 0.19     | SUBTROPICAL<br>TEMPERATE      | вотн                   | SPRING-<br>SUMMER |
|                       | TEMPERATE BLOOMS<br>UPWELLING                   | 9.95     | 33.91      | -0.01      | 0        | 0.03                       | 0.84                          | 0.16                                                              | 0.19     | TEMPERATE/<br>SUBPOLAR        | вотн                   | SPRING<br>SUMMER  |
|                       | TROPICAL SEAS                                   | 25.35    | 35.4       | 0.51       | 0        | 0.02                       | 0.32                          | 0.06                                                              | 0.2      | TROPICAL/SUBTRO<br>PICAL      | вотн                   | WINTER            |
|                       | MEDITERRANEAN RED SEA                           | 18.74    | 37.87      | 0.03       | 0        | 0.02                       | 0.22                          | 0.05                                                              | 0.22     | SUBTROPICAL/<br>TEMPERATE     | NORTH                  | WINTER            |
|                       | SUBTROPICAL TRANSITION<br>LOW NUTRIENT STRESS   | 20.89    | 33.59      | 0.64       | 0        | 0.01                       | 0.17                          | 0.02                                                              | 0.15     | TROPICAL/<br>SUBTROPICAL      | NORTH                  | SUMMER            |
|                       | MEDITERRANEAN RED SEA                           | 21.94    | 37.72      | -0.05      | 0        | 0.01                       | 0.11                          | 0.01                                                              | 0.1      | TEMPERATE/<br>SUBPOLAR        | вотн                   | SPRING-<br>SUMMER |
|                       | ARTIC/ SUBPOLAR SHELVES                         | 7.63     | 31.55      | 0.15       | 0        | 0.05                       | 1.19                          | 0.11                                                              | 0.09     | TEMPERATE/<br>SUBPOLAR        | вотн                   | YEAR ROUND        |
|                       | SUBTROPICAL, FRESH<br>INFLUENCED COASTAL        | 27.45    | 31.82      | 0.88       | 0        | 0.02                       | 0.34                          | 0.06                                                              |          | SUBTROPICAL                   | NORTH                  | WINTER/YEAR       |
|                       | WARM, BLOOMS, HIGH<br>NUTS                      | 22.54    | 34.46      | 0.57       | 0        | 0.07                       | 2.09                          | 0.24                                                              | 0.12     | TROPICAL/<br>SUBTROPICAL      | вотн                   | WINTER/YEAR       |
|                       | ARCTIC LATE SUMMER                              | 6.26     | 30.1       | -0.09      | 0.43     | 0.03                       | 0.47                          | 0.03                                                              | 0.06     | SUBPOLAR/POLAR                | NORTH                  | SUMMER            |
|                       | FRESHWATER INFLUENCED<br>POLAR/SUBPOLAR SHELVES | 8        | 27.74      | 0.11       | 1        | 0.05                       | 1.16                          | 0.06                                                              | 0.05     | SUBPOLAR/POLAR                | NORTH                  | SUMMER            |
|                       | ANTARCTIC SHELVES                               | 0.23     | 33.84      | -1.11      | 18.62    | 0.01                       | 0.32                          | 0.1                                                               | 0.3      | SUBPOLAR/POLAR                | SOUTH                  | SPRING<br>SUMMER  |
|                       | ICE PACK/LARGE POLYNAS                          | 0.8      | 30.64      | -0.38      | 62.24    | 0.02                       | 0.51                          | 0.06                                                              | 0.12     | SUBPOLAR/POLAR                | вотн                   | SPRING<br>SUMMER  |
|                       | ANTARCTIC ICE EDGE                              | 0.26     | 33.58      | -0.97      | 34.35    | 0.01                       | 0.4                           | 0.11                                                              | 0.27     | POLAR                         | SOUTH                  | SUMMER            |
|                       | HYPERSALINE EUTROPHIC,<br>PERSIAN GULF, RED SEA | 25.95    | 38.14      | 0.54       | 0        | 0.07                       | 1.15                          | 0.11                                                              | 0.09     | SUBTROPICAL/<br>TEMPERATE     | NORTH                  | WINTER/YEAR       |
|                       | ARCTIC ICE EDGE                                 | 2.33     | 27.76      | 0.06       | 35.84    | 0.03                       | 0.64                          | 0.03                                                              | 0.05     | POLAR                         | NORTH                  | SUMMER            |
|                       | ANTARCTIC                                       | 0.15     | 33.89      | -1.15      | 9.13     | 0.01                       | 0.27                          | 0.09                                                              | 0.32     | POLAR                         | SOUTH                  | SUMMER            |
| 30                    | ICE EDGE BLOOM                                  | 2.32     | 29.87      | 0.04       | 15.52    | 0.04                       | 0.81                          | 0.05                                                              |          | SUBPOLAR/POLAR                | NORTH                  | SPRING<br>SUMMER  |
| 31                    | 1-30% ICE PRESENT                               | NaN      | NaN        | NaN        | 15       | NaN                        |                               | NaN                                                               |          | SUBPOLAR POLAR                | BOTH                   | YEAR ROUND        |
|                       | 30-80% MARGINAL ICE                             | NaN      | NaN<br>NaN | NaN<br>NaN | 50<br>90 | NaN<br>NaN                 | NaN<br>NaN                    | NaN<br>NaN                                                        |          | SUBPOLAR POLAR SUBPOLAR POLAR | BOTH                   | YEAR ROUND        |

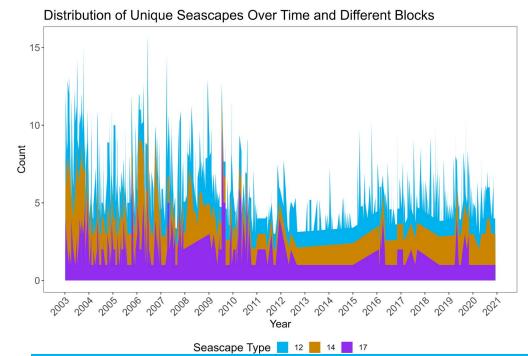


## METHODS



Understanding
spatial and
temporal
distribution of
data

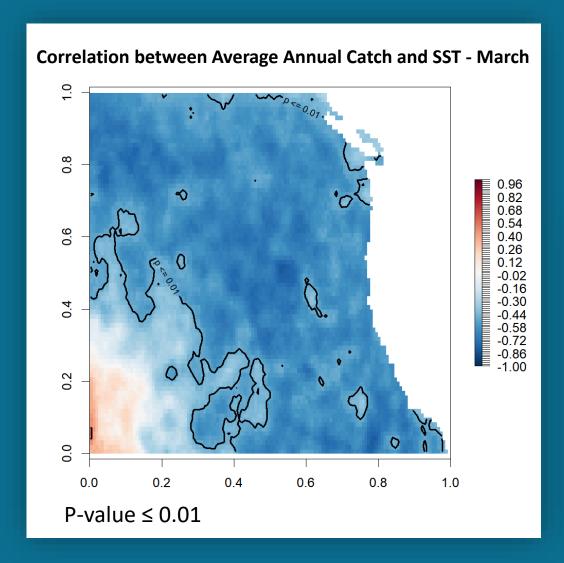

Data exploration of relationship between catch and SST


Additional data exploration with seascapes and habitat suitability

Spearman's Correlation and Log-likelihood testing



## Data Exploration






| 12 | Sub-Polar                                        | Year Round       |
|----|--------------------------------------------------|------------------|
| 14 | Temperate<br>Blooms<br>Upwelling                 | Spring<br>Summer |
| 17 | Subtropical<br>Transition Low<br>Nutrient Stress | Summer           |



### Results



## $\lambda = log(Nx/N/px)$

| SS ID | Descriptor                                       | Dominant<br>Season | Z-value         | P-value          |
|-------|--------------------------------------------------|--------------------|-----------------|------------------|
| 12    | Sub-Polar                                        | Year Round         | 0.695439        | 0.486779         |
| 14    | Temperate<br>Blooms<br>Upwelling                 | Spring<br>Summer   | <u>-3.35864</u> | <u>0.000783</u>  |
| 17    | Subtropical<br>Transition Low<br>Nutrient Stress | Summer             | <u>3.52103</u>  | <u>0.0004298</u> |



### So What?

next steps

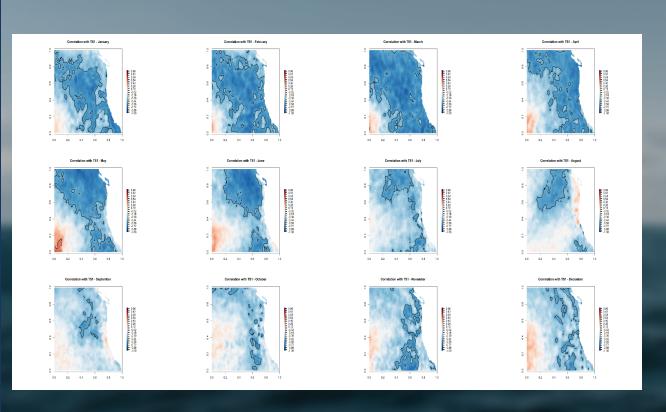
- 1. Temperature as a potential proxy
- 2. SS can improve efficiency by managing for habitat rather than species
- 3. Correlation Plots for HSI
- 4. Investigate incorporating SS into a predictive model

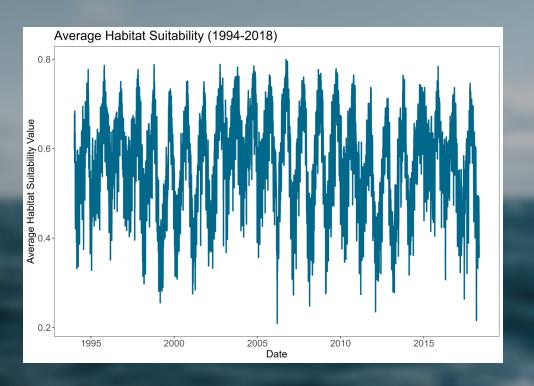


## Acknowledgements

#### Thank you:

Maria Kavanagh, Elliott Hazen, Issac Schroeder, Ryan Freedman, Adena Schonfeld, and Nerea Ochoa





This presentation was made possible by the National Oceanic and Atmospheric Administration, Office of Education Educational Partnership Program award number (NA16SEC4810007). Its contents are solely the responsibility of the award recipient and do not necessarily represent the official views of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration.



## Additional Figures



