Use of In-Situ and Airborne Data to Assess Satellite-Based Estimates of Directional Reflectance and Albedo

Miguel O. Román, Ph.D.
Miguel.O.Roman@nasa.gov

STAR Seminar – Tuesday, Nov. 3, 2009
9:30 a.m. – 10:30 a.m.
Room 707, World Weather Building
Outline

• BRDF/Albedo:
 – Overview & Dataset Applications
 – Validation Efforts: Assessment of Spatial Representativeness

• Cloud Absorption Radiometer (CAR):
 – CAR BRDF/Albedo Product: Algorithm Theoretical Basis
 – Case Study: 2007 CLaSIC-IOP (US Southern Great Plains)

• Future Work…
The Bidirectional Reflectance Distribution Function:
The BRDF describes the directional way solar radiation reflects from the surface.

- Surface albedo can be accurately estimated from the BRDF.
- The 'shape' of the BRDF contains information on the three-dimensional geometric structure of the surface.
MODIS BRDF/Albedo Algorithm: Standard Products

MCD43A1 (Surface Reflectance Anisotropy)—Supplies the three weighting parameters associated with the RossThickLiSparse Reciprocal (RTLSR) BRDF model that best describes the differences in radiation due to the scattering of each satellite pixel.

\[
BRDF(\theta_s, \theta_v, \Delta\phi, \lambda) \approx R(\theta_s, \theta_v, \Delta\phi, \Lambda)
\]

\[
= f_{iso}(\Lambda) + f_{vol}(\Lambda)K_{vol} + f_{geo}(\Lambda)K_{geo}
\]

- Kernels, \(K \), are functions of viewing and illumination geometry.
- Weights, \(f \), are functions of biophysical properties.
Black-Sky Albedo:
The albedo in the absence of a diffuse component and is a function of solar zenith angle (SZA).

White-Sky Albedo:
The albedo of the scene under perfectly diffuse illumination.

Actual surface albedo, as measured instantaneously by field albedometers, is a continuously varying function of: (1) the specific atmospheric conditions that modulate the incoming solar irradiance; and (2) the intrinsic anisotropic scattering of the surface as determined by the reflected irradiance.
July 22, 2008 (Bloomberg) -- “Smoke spreading across the sky from intense wildfires in North America could act temporarily to blunt the effect of climate change in the Arctic region.”

Radiative impact of boreal smoke in the Arctic: Observed and modeled
As production moves from MODIS data to NPP and NPOESS data, user specifications require that production also moves from the current multi-date approach to daily albedo computations.

Explicit characterization of the fraction of diffuse skylight under realistic scenarios of anisotropic diffuse illumination and multiple scattering helps improve the albedo retrievals under extremely turbid conditions and at high solar zenith angles.
Validation Efforts: “Forest Albedo Paper”

The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes

Miguel O. Román a,b,*, Crystal B. Schaaf b, Curtis E. Woodcock b, Alan H. Strahler b, Xiaoyuan Yang b, Rob H. Braswell c, Peter S. Curtis d, Kenneth J. Davis e, Danilo Dragoni f, Michael L. Goulden g, Lianhong Gu h, David Y. Hollinger i, Thomas E. Kolb j, Tilden P. Meyers k, J. William Munger l, Jeffrey L. Privette m, Andrew D. Richardson n, Tim B. Wilson k, Steven C. Wofsy l

a Terrestrial Information Systems Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
b Dept. of Geography and Environment, Boston University, Boston, MA, USA
c Institute for the Study of Earth Oceans and Space, Complex Systems Research Center, Durham, NH, USA
d Dept. of Evolution, Ecology, & Organismic Biology, Ohio State University, Columbus, OH, USA
e Dept. of Meteorology, Pennsylvania State University, University Park, PA, USA
f Dept. of Geography, Indiana University, Bloomington, IN, USA
g Department of Earth System Science, University of California-Irvine, Irvine, CA, USA
h Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
i USDA Forest Service, Northern Research Station, Durham, NH, USA
j School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
k Atmospheric Turbulence and Diffusion Division/NOAA, Oak Ridge, TN, USA
l Div. of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA
m NOAA National Climatic Data Center, Asheville, NC, USA
n Dept. of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA
Assessment of Spatial Representativeness

Spatial Representativeness:

The degree to which an *in-situ* measurement is able to capture the intrinsic variability of the surrounding landscape.
Case Study: UCI – Fire Chronosequence

This approach improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel.
Geostatistics as a Descriptor of Spatial Representativeness

1.5 km ETM+ Subset

External variability, Leaf-Off Conditions

04/26/2000

Internal variability, Leaf-On Conditions

05/26/2003

1.5 km ETM+ Subset

2.0 km

1.5 km

1.0 km

18.0 km ETM+ Subset (Bands 7–4–2)

Univ. of Mich. Biological Station, Michigan - 04/26/2000

ChEAS Park Falls, Wisconsin - 05/26/2003

Distance between observations (meters)
Case Study: Bartlett Experimental Forest, NH

Key Measures of Spatial Representativeness –

R_{CV} - A measure of **overall variability** independent of spatial effects.

A - Measures the **range of the variogram** using both the tower and satellite footprints as regions of interest.

R_{SV} - A relative measure of **structural variability**.

R_{ST} - Measures the relative **strength of spatial autocorrelation**.
The Cloud Absorption Radiometer (CAR) BRDF/Albedo Product: Applications in Terrestrial Ecosystem Modeling and Remote Sensing

Both aircraft and ground-based retrievals of the BRDF serve as important additional sources of validation for land surface satellite products.
The CAR BRDF/Albedo Product: Project Goals

Key Science Questions:

• What is the role played by scale in models describing the BRDF and albedo of land surfaces?

• How are disturbance regimes affecting the health and productivity of natural and agricultural resources?

Technical Objectives:

• To calibrate, complement, and enhance the interpretation of global terrestrial datasets.

• To recreate the measurement methodology, spatial coverage, and data processing protocols employed by current and future satellite sensors.

Images courtesy of Rajesh Poudyal
d. Cloud Absorption Radiometer (CAR) Parameters

- Angular scan range: 190°
- Instantaneous field of view: 17.5 mrad (1°)
- Pixels per scan line: 382
- Scan rate: 1.67 scan lines per second (100 rpm)
- Spectral channels (µm; bandwidth (FWHM)): 14 (8 continuously sampled and last six in filter wheel): 0.340(0.009), 0.381(0.006), 0.472(0.021), 0.682(0.022), 0.870(0.022), 1.036(0.022), 1.219(0.022), 1.273(0.023), 1.556(0.032), 1.656(0.045), 1.737(0.040), 2.103(0.044), 2.205(0.042), 2.302(0.043)
CLASIC Flight #1928: Flight Segment Details

Imagery from CAR

Zenith°
Nadir°

One Circular Orbit
Flight Direction
CAR BRDF/Albedo Product – Algorithm Development, Stage I:

- **Radiometric Calibration**
 - CAR Level 1 DNs: $DN_{(\text{scan\#}, \Lambda, \theta_s, \phi_v)}$
 - CAR Flight #1928 Calibration Coefficients: $\text{Gain}(\Lambda), \text{Offset}(\Lambda)$
 - Radiance at sensor: $L_{(\text{scan\#}, \Lambda, \theta_s, \phi_v)}$

Setup for integrating sphere source to determine the CAR’s responsivity across its angular scan range.

Spectral radiance output from the integrating sphere as measured by CAR at 0.5° intervals across the 190° scan range.
The CAR instrument is actively stabilized by a sophisticated navigation system.

Each mirror-scan is accompanied by high-frequency navigation data, which allows for excellent geolocation accuracy (< 1m).
CAR BRDF/Albedo Product – Algorithm Development, Stages III - V:

III. Atmospheric Correction:
- Directional surface reflectances are derived by removing the effects of atmospheric absorption and scattering using the 6SV code.

IV. BRDF and Albedo Model Inversions:
- BRDF kernel model parameters and surface albedos are extracted for each CAR spectral channel.

Aerosol column particle volume size distribution retrieved from the CAR during CLASIC Flight #1928.
Case Study: The ARM Southern Great Plains (SGP)

- Direct measurements of key terrestrial essential variables require significant instrumental deployment in areas where *in-situ* data are scarce.

- It is clearly not feasible to provide such “ground-truth” information to assess the errors in global satellite observations, and thus provide the necessary quality controls required by rigorous modeling efforts.

The ARM Southern Great Plains (SGP) is one of the few regions on Earth where field and tower measurements are spatially distributed across a large region.
Case Study: ARM Central Facility - CAR Flight #1928

A. Bird's eye view of the ARM-Southern Great Plains Central Facility (SGP-CF).

B. Facing southwest atop the Radiometric Calibration Facility.

C. Facing west atop the Guest Instrument Facility.
Assessments of spatial representativeness at the SGP-Central Facility during the CLASIC-IOP indicate that the surface conditions inside the footprint of the 60 m flux tower are significantly different from the surrounding region extending to a MODIS pixel.
CLASIC Flight #1928: Land Cover Characteristics

- ARM-CLASIC Flight #1928 Goals:
 - To reconstruct areal-mean, nadir-normalized, and angular indexes of vegetation structure directly from CAR at multiple spatial scales.
 - To compare areal-mean retrievals of the BRDF between the CAR and MODIS sensors.
 - To derive the average BRDF obtained by CAR for typical land cover types in the SGP-CF area.

AWiFS 56 m land cover map (Lamont, Oklahoma).
It is useful to estimate the impacts of the uncertainties in the BRDF directly on the higher-level (reflectance-based) measures themselves, as the errors are not spatially and/or spectrally independent.

These assessments can be enhanced by deriving vegetation indexes (e.g. NDVI and EVI) from CAR at increased spatial scales and under a wide range of viewing and illumination conditions.
The angular sampling efficiency of CAR measurements can also be used to extract information about the directional structure of the landscape.

Angular indexes e.g. NDHD use the relative magnitude of the ‘darkspot’ to the ‘hotspot’ reflectances to characterize the anisotropic behavior of the land surface.

Both *in-situ* and *modeled* estimates of NDVI, EVI, and NDHD were derived from CAR retrievals.
Quality Assurance Fields

Frequency maps indicating the number of CAR observations when using spatial intervals defined by 50 m (A.) and 100 m (B.) grid cells.

Highest Quality Retrievals from CAR

Fraction of CAR observations (from above) that are within ±10° of the principal solar plane.
Model-Based (BRDF) Retrievals from CAR

50 m NBAR-subsets from CAR: \{R,G,B\} = \{870nm, 682nm, 472nm\}

Plot #1 – Pasture

Plot #2 - Corn

CLASIC Flight #1928 Nadir BRDF Adjusted Reflectance (50.0m) (06/24/2007)

QuickBird RGB Composite (2.4m) (07/01/2007)

Plot #3 – Winter-Wheat

Plot #4 – Stubble

CLASIC-AWiFS Land Cover Dataset (56.0m)

Legend:
- Urban/Bare Soil
- Forest
- Pasture
- Wheat
- Corn
- Roads
- SGP-CF Tower
Some (Very Preliminary) Results

Table 1: Sample Sizes and Mean Pixel Sizes

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>% of Sample</th>
<th>Mean Pixel Size</th>
<th>Direct Method: Mean BRFs</th>
<th>Direct Method: Shape Indicators</th>
<th>Direct Method: Vegetation Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Band3</td>
<td>Band4</td>
<td>Band5</td>
</tr>
<tr>
<td>3141</td>
<td>34.35%</td>
<td>7.12</td>
<td>0.0513</td>
<td>0.1048</td>
<td>0.1945</td>
</tr>
<tr>
<td>2596</td>
<td>28.39%</td>
<td>34.93</td>
<td>0.0473</td>
<td>0.0965</td>
<td>0.1842</td>
</tr>
<tr>
<td>1830</td>
<td>20.02%</td>
<td>46.95</td>
<td>0.0408</td>
<td>0.0819</td>
<td>0.1543</td>
</tr>
<tr>
<td>505</td>
<td>5.52%</td>
<td>67.32</td>
<td>0.0238</td>
<td>0.0508</td>
<td>0.0937</td>
</tr>
<tr>
<td>1006</td>
<td>11.00%</td>
<td>174.96</td>
<td>0.0281</td>
<td>0.0605</td>
<td>0.1081</td>
</tr>
<tr>
<td>65</td>
<td>0.71%</td>
<td>260.07</td>
<td>0.0267</td>
<td>0.0598</td>
<td>0.1055</td>
</tr>
</tbody>
</table>

Table 2: RTLSR Model Uncertainty

<table>
<thead>
<tr>
<th>Mean Pixel Size</th>
<th>Band3</th>
<th>Band4</th>
<th>Band5</th>
<th>Direct Method: NBAR</th>
<th>Direct Method: Shape Indicators</th>
<th>Direct Method: NBAR Vegetation Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RTLSR Model: NBAR</td>
<td>RTLSR Model: Shape Indicators</td>
<td>RTLSR Model: NBAR Vegetation Indexes</td>
</tr>
<tr>
<td>7.12</td>
<td>0.0178</td>
<td>0.0253</td>
<td>0.0459</td>
<td>0.032</td>
<td>0.0795</td>
<td>0.1486</td>
</tr>
<tr>
<td>34.93</td>
<td>0.0138</td>
<td>0.0214</td>
<td>0.0438</td>
<td>0.0319</td>
<td>0.0752</td>
<td>0.1404</td>
</tr>
<tr>
<td>46.95</td>
<td>0.0083</td>
<td>0.014</td>
<td>0.0305</td>
<td>0.0294</td>
<td>0.0616</td>
<td>0.1189</td>
</tr>
<tr>
<td>67.32</td>
<td>0.0004</td>
<td>0.0007</td>
<td>0.0033</td>
<td>0.0209</td>
<td>0.0435</td>
<td>0.0901</td>
</tr>
<tr>
<td>174.96</td>
<td>0.0024</td>
<td>0.0055</td>
<td>0.0118</td>
<td>0.0236</td>
<td>0.0493</td>
<td>0.0886</td>
</tr>
<tr>
<td>260.07</td>
<td>0.0005</td>
<td>0.0012</td>
<td>0.0013</td>
<td>0.0262</td>
<td>0.0586</td>
<td>0.1042</td>
</tr>
</tbody>
</table>

Table 3: Weighted Sample Means and Uncertainties

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Band3</th>
<th>Band4</th>
<th>Band5</th>
<th>NDHD-Band4</th>
<th>NDHD-Band5</th>
<th>NBAR-NDVI</th>
<th>NBAR-EVI</th>
<th>NBAR-NDVI</th>
<th>NBAR-EVI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weighted Sample Mean</td>
<td>0.0438</td>
<td>0.0987</td>
<td>0.1678</td>
<td>0.8572</td>
<td>0.7755</td>
<td>0.308</td>
<td>0.1515</td>
<td>0.3495</td>
</tr>
<tr>
<td>Spatial Uncertainty (Abs. Units)</td>
<td>0.0164</td>
<td>0.0311</td>
<td>0.061</td>
<td>0.4374</td>
<td>0.3409</td>
<td>0.0184</td>
<td>0.049</td>
<td>0.0514</td>
<td>0.0433</td>
</tr>
<tr>
<td>RTLSR: Total Uncertainty (Abs. Units)</td>
<td>0.0199</td>
<td>0.0391</td>
<td>0.0704</td>
<td>0.6941</td>
<td>0.6569</td>
<td>0.0306</td>
<td>0.0505</td>
<td>0.0447</td>
<td>0.114</td>
</tr>
</tbody>
</table>

The impact of the uncertainties associated to these multi-scale retrievals depends on:

1. The number of samples obtained for a particular spatial threshold.
2. Retrieval quality (both measured and model-based).
3. The degree to which directional effects are minimized (i.e. by way of):
 (a) NBAR-based retrievals -- $\theta_{\text{view}} = 0^\circ$; $\theta_{\text{solar}} = 0^\circ$.
 (b) Nadir-adjusted retrievals -- $\theta_{\text{view}} = 0^\circ$; $\theta_{\text{solar}} = [0-80^\circ]$.
 (c) Areal-mean retrievals -- $\theta_{\text{view}} = [0-80^\circ]$; $\theta_{\text{solar}} = [0-80^\circ]$.
Multiscale assessments of the BRDF are key to understanding the effects of scale (spatial resolution) on higher-level surface biophysical properties (e.g. vegetation indexes, surface albedo, LAI/FPAR, burned area, land cover, and land cover change).

This upscaling methodology can characterize the measurement, scaling, and analytical errors from several ecosystems across the sampling domain observed by CAR.
Narrowband BRDF Retrievals of Archetypal Landscapes

Spectral BRDFs for selected CAR channels obtained over various land cover types at the ARM Central Facility.
Areally-Weighted **Broadband** BRDFs from CAR and MODIS

Areal-mean comparisons between the CAR and MODIS instruments.
Mapping Uncertainty Beyond a “Single-Pixel”
The large uncertainties that plague satellite-to-field data comparisons remains a barrier to our understanding of the Earth surface processes that they describe; and of how multi-scale changes due to anthropogenic activity can affect climate.
RTLSR BRDF model inversions of archetypal landscapes in the SGP region were derived from spatially-consistent directional surface reflectances obtained from CAR. These datasets can be used to constrain and validate model behavior at regional scales (>1.0km).
Confidence Layer – Key Attributes:

- Provides a measure of pixel-specific accuracy.

- Quantifies the systematic bias and uncertainty in surface albedo retrievals from satellite sensors.

- Can be assimilated into regional and global modeling schemes.
Systematic errors can be largely reduced by quantifying the differences in directional reflectance at the multiple spatial scales at which global land products are commonly utilized.
Upcoming Cal/Val Activities
The ARCTAS campaign offers a rare opportunity to validate snow albedo retrievals derived from satellite sensors against field measurements and aircraft observations throughout the rapidly changing conditions of spring melt in the Arctic.

CAR BRDF/Albedo Products: Future Efforts

Technical Objective: To improve vicarious calibration exercises by addressing the higher-order spatial and directional uncertainties specific to these natural environments.
Final Thoughts

• In the coming decade NASA’s Earth Science Division will be facing a challenge to implement venture class missions to incorporate an optimal mix of space-based and suborbital sensor platforms.

• A complete characterization of terrestrial essential climate variables will leverage opportunities in these missions by providing a key source of ground-truth data throughout pre- and post-launch Cal/Val activities.

In-Situ and Airborne Science Platforms...

... In Support of NASA’s Earth Science Projects
Recent/Upcoming Publications

