NOAA Center for Satellite Applications and Research banner
 
National Oceanic & Atmospheric Administration website NOAA Center for Satellite Applications and Research website

STAR Satellite Rainfall Estimates

Hydroestimator Animation Controls:

     
Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-17-2024 - 22:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-17-2024 - 23:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 00:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 01:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 02:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 03:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 04:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 05:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 06:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 07:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 08:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 09:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 10:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 11:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 12:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 13:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 14:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 15:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 16:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 17:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 18:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 19:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 20:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 21:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 22:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-18-2024 - 23:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-19-2024 - 00:00 UTC Hydro-Estimator - Contiguous United States - 6-Hour Estimated Rainfall Rate - 03-19-2024 - 01:00 UTC

Purpose of This Site

This page provides access to short-term rainfall products which are produced in real-time at STAR, both in image and data formats. These products are intended for use for short-term estimates of rainfall at high spatial and temporal resolution; for climate applications, we recommend other products such as CMORPH which have a higher level of accuracy but have longer latency times.

Why Use Satellite Rainfall Estimates?

Rain gauges provide a direct measurement of rainfall; however, the spatial density of rain gauge networks (especially of gauges whose data are available in real time) is typically far too coarse to capture the spatial variability of rainfall at small scales. Radar provides an indirect measurement of rainfall, but only for regions within a few hundred km of a radar unit - and even less in mountainous regions due to blockage of the beam. Estimates of rainfall from satellite data are less direct and less accurate than either gauges or radar, but have the advantage of high spatial resolution (4 km) and complete coverage over oceans, mountainous regions, and sparsely populated areas where other sources of rainfall data are not available. Since flash flood events often originate with heavy rainfall in sparsely instrumented areas that goes undetected, satellite-derived rainfall can be a critical tool for identifying hazards from smaller-scale rainfall and flood events.

Products

The current real-time rainfall products at STAR are:

  • The Hydro-Estimator (H-E), which produces estimates based on GOES IR window brightness temperatures and modifies them using numerical weather model data. The H-E has been the operational algorithm at NESDIS since 2002. It is produced operationally (24/7 support) over the entire globe from 65 S to 65 N.
  • The Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), which uses data from multiple GOES imager bands and updates its calibration in real time against microwave rainfall rates. It is produced experimentally over the Western Hemisphere.

In addition, Ensemble Tropical Rainfall Potential (eTRaP) produces forecasts of 0-24 hours of rainfall from tropical cyclones based on satellite rain rate estimates and predicted storm tracks.

Please refer to the corresponding product pages for additional information on these products.

In addition, the Product Validation page provides current and recent validation of 6-hour and 24-hour satellite rainfall estimates compared to rain gauges and the Stage IV radar / rain gauge field.