NOAA GOES Image Viewer website
5 Dec 2020 - 16:57 EST
5 Dec 2020 - 21:57 UTC

GOES-West - Sector view: U.S. Pacific Coast - Nighttime Microphysics*

4 hour loop - 24 images - 10 minute update

To enlarge, pause animation & click the image. Hover over popups to zoom. Use slider to navigate.

  

  
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1750 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1750 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1800 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1800 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1810 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1810 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1820 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1820 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1830 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1830 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1840 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1840 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1850 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1850 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1900 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1900 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1910 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1910 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1920 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1920 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1930 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1930 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1940 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1940 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1950 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 1950 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2000 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2000 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2010 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2010 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2020 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2020 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2030 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2030 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2040 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2040 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2050 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2050 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2100 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2100 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2110 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2110 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2120 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2120 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2130 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2130 UTC Latitude / Longitude grid
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2140 UTC
Nighttime Microphysics - RGB used to distinguish clouds from fog - 05 Dec 2020 - 2140 UTC Latitude / Longitude grid
 

About Nighttime Microphysics

Nighttime Microphysics RGB The distinction between low clouds and fog in satellite imagery is challenging. While the difference between the 10.4 and 3.9 μm channels has been a regularly applied product to meet aviation forecast needs, the Nighttime Microphysics (NtMicro) RGB adds another channel difference (12.4- 10.4 μm) as a proxy to cloud thickness and repeats the use of the 10.4 μm thermal channel to enhance areas of warm (i.e. low) clouds where fog is more likely. The NtMicro RGB is also an efficient tool to quickly identify other cloud types in the mid and upper atmosphere.

• For more details, see the Nighttime Microphysics RGB Quick Guide, (PDF, 1.41 MB)

*GOES-17 Infrared Image Quality

During post-launch testing of the GOES-17 ABI instrument, an issue with the instrument's cooling system was discovered. The loop heat pipe (LHP) subsystem, which transfers heat from the ABI electronics to the radiator, is not operating at its designed capacity. The consequence of this is that the ABI detectors cannot be maintained at their intended temperatures under certain orbital conditions. This is preventing adequate cooling for some of the infrared (IR) channels on the instrument during parts of the night, leading to partial loss of ABI imagery. Learn more.

Wait for animated GIF to build; then download.